METHOTREXATE INHIBITS PROTEOLYSIS OF DIHYDROFOLATE-REDUCTASE BY THE N-END RULE PATHWAY

被引:102
作者
JOHNSTON, JA [1 ]
JOHNSON, ES [1 ]
WALLER, PRH [1 ]
VARSHAVSKY, A [1 ]
机构
[1] CALTECH,DIV BIOL,PASADENA,CA 91125
关键词
D O I
10.1074/jbc.270.14.8172
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In eukaryotes, the N-end rule pathway is a ubiquitin-dependent, proteasome-based system that targets and processively degrades proteins bearing certain N-terminal residues. Arg-DHFR, a modified dihydrofolate reductase bearing an N-terminal arginine (destabilizing residue in the N-end rule), is short lived in ATP-supplemented reticulocyte extract. It is shown here that methotrexate, which is a folic acid analog and high affinity ligand of DHFR, inhibits the degradation but not ubiquitination of Arg-DHFR by the N-end rule pathway. The degradation of other N-end rule substrates is not affected by methotrexate. We discuss implications of these results for the mechanism of proteasome-mediated protein degradation.
引用
收藏
页码:8172 / 8178
页数:7
相关论文
共 46 条
[1]  
ARKOWITZ RA, 1992, EMBO J, V12, P243
[2]  
Ausubel F, 1988, CURRENT PROTOCOLS MO
[3]   THE DEGRADATION SIGNAL IN A SHORT-LIVED PROTEIN [J].
BACHMAIR, A ;
VARSHAVSKY, A .
CELL, 1989, 56 (06) :1019-1032
[4]   INVIVO HALF-LIFE OF A PROTEIN IS A FUNCTION OF ITS AMINO-TERMINAL RESIDUE [J].
BACHMAIR, A ;
FINLEY, D ;
VARSHAVSKY, A .
SCIENCE, 1986, 234 (4773) :179-186
[5]   INHIBITION OF THE N-END RULE PATHWAY IN LIVING CELLS [J].
BAKER, RT ;
VARSHAVSKY, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (04) :1090-1094
[6]  
BAKER RT, 1992, J BIOL CHEM, V267, P23364
[7]   THE RECOGNITION COMPONENT OF THE N-END RULE PATHWAY [J].
BARTEL, B ;
WUNNING, I ;
VARSHAVSKY, A .
EMBO JOURNAL, 1990, 9 (10) :3179-3189
[8]   INTRACELLULAR PROTEIN TOPOGENESIS [J].
BLOBEL, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (03) :1496-1500
[9]   A MULTIUBIQUITIN CHAIN IS CONFINED TO SPECIFIC LYSINE IN A TARGETED SHORT-LIVED PROTEIN [J].
CHAU, V ;
TOBIAS, JW ;
BACHMAIR, A ;
MARRIOTT, D ;
ECKER, DJ ;
GONDA, DK ;
VARSHAVSKY, A .
SCIENCE, 1989, 243 (4898) :1576-1583
[10]   THE UBIQUITIN-MEDIATED PROTEOLYTIC PATHWAY - MECHANISMS OF RECOGNITION OF THE PROTEOLYTIC SUBSTRATE AND INVOLVEMENT IN THE DEGRADATION OF NATIVE CELLULAR PROTEINS [J].
CIECHANOVER, A ;
SCHWARTZ, AL .
FASEB JOURNAL, 1994, 8 (02) :182-191