ON ERDOS-RADO NUMBERS

被引:23
作者
LEFMANN, H
RODEL, V
机构
[1] UNIV DORTMUND,LEHRSTUHL INFORMAT 2,D-44221 DORTMUND,GERMANY
[2] EMORY UNIV,DEPT MATH & COMP SCI,ATLANTA,GA 30322
关键词
D O I
10.1007/BF01294461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper new proofs of the Canonical Ramsey Theorem, which originally has been proved by Erdos and Rado, are given. These yield improvements over the known bounds for the arising Erdos-Rado numbers ER(k;l), where the numbers ER(k;l) are defined as the least positive integer n such that for every partition of the Ic-element subsets of a totally ordered n-element set X into an arbitrary number of classes there exists an I-element subset Y of X, such that the set of k-element subsets of Y is partitioned canonically (in the sense of Erdos and Rado). In particular, it is shown that 2(c1 . l2) less than or equal to ER(2;1) less than or equal to 2(c2 . l2). log l for every positive integer l greater than or equal to 3, where c1,c2 are positive constants. Moreover, new bounds, lower and upper, for the numbers ER(k;l) for arbitrary positive integers k, l are given.
引用
收藏
页码:85 / 104
页数:20
相关论文
共 26 条
[1]   EXTREMAL UNCROWDED HYPERGRAPHS [J].
AJTAI, M ;
KOMLOS, J ;
PINTZ, J ;
SPENCER, J ;
SZEMEREDI, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 32 (03) :321-335
[3]  
ALON N, 1991, C MATH SOC JANOS BOL, V60, P9
[4]   AN ANTI-RAMSEY THEOREM [J].
BABAI, L .
GRAPHS AND COMBINATORICS, 1985, 1 (01) :23-28
[5]   CANONICAL PARTITION RELATIONS [J].
BAUMGARTNER, JE .
JOURNAL OF SYMBOLIC LOGIC, 1975, 40 (04) :541-554
[6]  
DUFFUS D, IN PRESS SHIFT GRAPH
[7]  
DUKE RA, 1992, IN PRESS UNCROWDED H
[8]   SOME REMARKS ON THE THEORY OF GRAPHS [J].
ERDOS, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (04) :292-294
[9]   RAMSEY-TYPE THEOREMS [J].
ERDOS, P ;
HAJNAL, A .
DISCRETE APPLIED MATHEMATICS, 1989, 25 (1-2) :37-52
[10]   PARTITION RELATIONS FOR CARDINAL NUMBERS [J].
ERDOS, P ;
HAJNAL, A ;
RADO, R .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1965, 16 (1-2) :93-&