HIGH-ORDER NONLINEAR SCHRODINGER EQUATION FOR THE ENVELOPE OF SLOWLY MODULATED GRAVITY WAVES ON THE SURFACE OF FINITE-DEPTH FLUID AND ITS QUASI-SOLITON SOLUTIONS

被引:9
作者
Gandzha, I. S. [1 ]
Sedletsky, Yu. V. [1 ]
Dutykh, D. S. [2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Phys, 46 Prosp Nauky, UA-03028 Kiev, Ukraine
[2] Univ Savoie Mt Blanc, CNRS, LAMA UMR 5127, F-73376 La Bourget Du Lac, France
来源
UKRAINIAN JOURNAL OF PHYSICS | 2014年 / 59卷 / 12期
关键词
nonlinear Schrodinger equation; gravity waves; finite depth; slow modulations; wave envelope; quasi-soliton; multiple-scale expansions;
D O I
10.15407/ujpe59.12.1201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the high-order nonlinear Schrodinger equation derived earlier by Sedletsky [Ukr. J. Phys. 48(1), 82 (2003)] for the first-harmonic envelope of slowly modulated gravity waves on the surface of finite-depth irrotational, inviscid, and incompressible fluid with flat bottom. This equation takes into account the third-order dispersion and cubic nonlinear dispersive terms. We rewrite this equation in dimensionless form featuring only one dimensionless parameter kh, where k is the carrier wavenumber and h is the undisturbed fluid depth. We show that one-soliton solutions of the classical nonlinear Schrodinger equation are transformed into quasi-soliton solutions with slowly varying amplitude when the high-order terms are taken into consideration. These quasi-soliton solutions represent the secondary modulations of gravity waves.
引用
收藏
页码:1201 / 1215
页数:15
相关论文
共 71 条
[11]   Long time interaction of envelope solitons and freak wave formations [J].
Clamond, Didier ;
Francius, Marc ;
Grue, John ;
Kharif, Christian .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2006, 25 (05) :536-553
[12]   Nonlinear evolution equations for surface plasmons for nano-focusing at a Kerr/metallic interface and tapered waveguide [J].
Crutcher, Sihon H. ;
Osei, Albert ;
Biswas, Anjan .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (04) :1156-1162
[13]   3-DIMENSIONAL PACKETS OF SURFACE-WAVES [J].
DAVEY, A ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 338 (1613) :101-110
[14]   A higher-order nonlinear evolution equation for broader bandwidth gravity waves in deep water [J].
Debsarma, S ;
Das, KP .
PHYSICS OF FLUIDS, 2005, 17 (10)
[15]   Nonlinear gravity and capillary-gravity waves [J].
Dias, F ;
Kharif, C .
ANNUAL REVIEW OF FLUID MECHANICS, 1999, 31 :301-346
[16]  
Dodd R.K., 1984, SOLITONS NONLINEAR W
[17]   A dynamic equation for water waves in one horizontal dimension [J].
Dyachenko, A. . ;
Zakharov, V. E. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2012, 32 :17-21
[18]   Compact Equation for Gravity Waves on Deep Water [J].
Dyachenko, A. I. ;
Zakharov, V. E. .
JETP LETTERS, 2011, 93 (12) :701-705
[19]   NOTE ON A MODIFICATION TO THE NON-LINEAR SCHRODINGER-EQUATION FOR APPLICATION TO DEEP-WATER WAVES [J].
DYSTHE, KB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 369 (1736) :105-114
[20]   Solitary wave interaction in a compact equation for deep-water gravity waves [J].
Fedele, F. ;
Dutykh, D. .
JETP LETTERS, 2012, 95 (12) :622-625