HIGH-ORDER NONLINEAR SCHRODINGER EQUATION FOR THE ENVELOPE OF SLOWLY MODULATED GRAVITY WAVES ON THE SURFACE OF FINITE-DEPTH FLUID AND ITS QUASI-SOLITON SOLUTIONS

被引:9
作者
Gandzha, I. S. [1 ]
Sedletsky, Yu. V. [1 ]
Dutykh, D. S. [2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Phys, 46 Prosp Nauky, UA-03028 Kiev, Ukraine
[2] Univ Savoie Mt Blanc, CNRS, LAMA UMR 5127, F-73376 La Bourget Du Lac, France
来源
UKRAINIAN JOURNAL OF PHYSICS | 2014年 / 59卷 / 12期
关键词
nonlinear Schrodinger equation; gravity waves; finite depth; slow modulations; wave envelope; quasi-soliton; multiple-scale expansions;
D O I
10.15407/ujpe59.12.1201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the high-order nonlinear Schrodinger equation derived earlier by Sedletsky [Ukr. J. Phys. 48(1), 82 (2003)] for the first-harmonic envelope of slowly modulated gravity waves on the surface of finite-depth irrotational, inviscid, and incompressible fluid with flat bottom. This equation takes into account the third-order dispersion and cubic nonlinear dispersive terms. We rewrite this equation in dimensionless form featuring only one dimensionless parameter kh, where k is the carrier wavenumber and h is the undisturbed fluid depth. We show that one-soliton solutions of the classical nonlinear Schrodinger equation are transformed into quasi-soliton solutions with slowly varying amplitude when the high-order terms are taken into consideration. These quasi-soliton solutions represent the secondary modulations of gravity waves.
引用
收藏
页码:1201 / 1215
页数:15
相关论文
共 71 条
[1]   Modulated periodic Stokes waves in deep water [J].
Ablowitz, MJ ;
Hammack, J ;
Henderson, D ;
Schober, CM .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :887-890
[2]   Long-time dynamics of the modulational instability of deep water waves [J].
Ablowitz, MJ ;
Hammack, J ;
Henderson, D ;
Schober, CM .
PHYSICA D, 2001, 152 :416-433
[3]   HIGHER-ORDER MODULATION EFFECTS ON SOLITARY WAVE ENVELOPES IN DEEP-WATER [J].
AKYLAS, TR .
JOURNAL OF FLUID MECHANICS, 1989, 198 :387-397
[4]  
[Anonymous], 1968, J APPL MECH TECH PH+, DOI 10.1007/BF00913182
[5]   Sasa-Satsuma equation: Soliton on a background and its limiting cases [J].
Bandelow, U. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2012, 86 (02)
[6]  
BENNEY DJ, 1969, STUD APPL MATH, V48, P377
[7]  
BESPALOV VI, 1966, JETP LETT-USSR, V3, P307
[8]   4TH ORDER EVOLUTION-EQUATIONS AND STABILITY ANALYSIS FOR STOKES WAVES ON ARBITRARY WATER DEPTH [J].
BRINCHNIELSEN, U ;
JONSSON, IG .
WAVE MOTION, 1986, 8 (05) :455-472
[9]   Rogue Wave Observation in a Water Wave Tank [J].
Chabchoub, A. ;
Hoffmann, N. P. ;
Akhmediev, N. .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)
[10]   A NUMERICAL STUDY OF NONLINEAR SCHRODINGER-EQUATION SOLUTIONS FOR MICROWAVE SOLITONS IN MAGNETIC THIN-FILMS [J].
CHEN, M ;
NASH, JM ;
PATTON, CE .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (08) :3906-3909