SHARP INEQUALITIES FOR THE CONDITIONAL SQUARE FUNCTION OF A MARTINGALE

被引:0
|
作者
GANG, W
机构
关键词
MARTINGALE; CONDITIONALLY SYMMETRICAL MARTINGALE; DYADIC MARTINGALE; SQUARE-FUNCTION INEQUALITY; CONDITIONAL-SQUARE-FUNCTION INEQUALITY; CONFLUENT HYPERGEOMETRIC FUNCTION;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f be a real martingale and s(f) its conditional square function. Then the following inequalities are sharp: parallel-to f parallel-to p less-than-or-equal-to square-root 2/p parallel-to s(f) parallel-to p, 0 < p less-than-or-equal-to 2, square-root 2/p parallel-to s(f) parallel-to p less-than-or-equal-to parallel-to f parallel-to p, p greater-than-or-equal-to 2. The second inequality is still sharp if f is replaced by the maximal function f*. Let S(f) denote the square function of f. Then the following inequalities are also sharp: parallel-to S(f) parallel-to p less-than-or-equal-to square-root 2/p parallel-to s(f) parallel-to p, 0 < p less-than-or-equal-to 2, square-root 2/p parallel-to s(f) parallel-to p less-than-or-equal-to parallel-to S(f) parallel-to p, p greater-than-or-equal-to 2. These inequalities hold for Hilbert-space-valued martingales and are strict inequalities in all of the nontrivial cases.
引用
收藏
页码:1679 / 1688
页数:10
相关论文
共 50 条