A generalization of the Fermat theorem on polygonal numbers

被引:2
|
作者
Griffiths, LW
机构
关键词
D O I
10.2307/1968134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Fermat's polygonal number theorem for repeated generalized polygonal numbers
    Banerjee, Soumyarup
    Batavia, Manav
    Kane, Ben
    Kyranbay, Muratzhan
    Park, Dayoon
    Saha, Sagnik
    So, Hiu Chun
    Varyani, Piyush
    JOURNAL OF NUMBER THEORY, 2021, 220 : 163 - 181
  • [2] A GENERALIZATION OF FERMAT LITTLE THEOREM
    GILLESPIE, FS
    FIBONACCI QUARTERLY, 1989, 27 (02): : 109 - 115
  • [3] ON A GENERALIZATION OF FERMAT LITTLE THEOREM
    STRUNKOV, SP
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01): : 199 - 201
  • [4] GENERALIZATION OF EULER-FERMAT THEOREM
    HEUER, GA
    MASLEY, J
    BLOOM, DM
    BODDEN, WE
    CURRIER, SC
    DICKSON, LJ
    EDGAR, HM
    EWING, EW
    GARLICK, PK
    GIBBS, RA
    STOCKER, H
    GROSSWAL.E
    KIPERS, L
    LANGFORD, E
    LINDSTRO.PW
    LOSSES, OP
    MCDONALD, M
    MCDONALD, G
    MODAK, MR
    MURPHY, C
    PARSON, A
    PICKARD, D
    PRIELIPP, B
    SANCHEZ, WJ
    STEIN, A
    WANG, ETH
    WEHLEN, JA
    WEXLER, C
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (07): : 784 - 784
  • [5] FIBONACCI NUMBERS AND FERMAT LAST THEOREM
    SUN, ZH
    SUN, ZW
    ACTA ARITHMETICA, 1992, 60 (04) : 371 - 388
  • [6] ON FERMAT LAST THEOREM AND THE BERNOULLI NUMBERS
    AGOH, T
    JOURNAL OF NUMBER THEORY, 1982, 15 (03) : 414 - 422
  • [7] A new generalization of Fermat's Last Theorem
    Cai, Tianxin
    Chen, Deyi
    Zhang, Yong
    JOURNAL OF NUMBER THEORY, 2015, 149 : 33 - 45
  • [8] CLASS-NUMBERS AND A GENERALIZED FERMAT THEOREM
    MOLLIN, RA
    JOURNAL OF NUMBER THEORY, 1983, 16 (03) : 420 - 429
  • [9] Fermat's footsteps. The polygonal number theorem and its proof
    Tamborini, Massimo
    RIVISTA DI STORIA DELLA FILOSOFIA, 2010, 65 (02) : 383 - 385
  • [10] Polygonal numbers and Rogers–Ramanujan–Gordon theorem
    Mircea Merca
    The Ramanujan Journal, 2021, 55 : 783 - 792