TORSION UNITS IN INFINITE GROUP-RINGS

被引:9
作者
BOVDI, A
MARCINIAK, Z
SEHGAL, SK
机构
[1] LAJOS KOSSUTH UNIV,H-4010 DEBRECEN,HUNGARY
[2] WARSAW UNIV,PL-00661 WARSAW,POLAND
[3] UNIV ALBERTA,EDMONTON T6G 2G1,ALBERTA,CANADA
关键词
D O I
10.1006/jnth.1994.1038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A conjecture of Zassenhaus says that if G is a finite group then any unit u = SIGMA u(g) g of finite order in ZG is conjugate in QG to +/- g, for some g is-an-element-of G. This is known to be equivalent to saying that u(g0) = SIGMA(h approximately g0), u(h) is nonzero for a unique conjugacy class C(g0) of elements of G. We prove that this latter condition holds for infinite nilpotent groups as well. We also study the possibility of stable diagonalization of torsion matrices over ZG. (C) 1994 Academic Press, Inc.
引用
收藏
页码:284 / 299
页数:16
相关论文
共 16 条
[1]   EULER CHARACTERISTICS AND CHARACTERS OF DISCRETE GROUPS [J].
BASS, H .
INVENTIONES MATHEMATICAE, 1976, 35 :155-196
[2]  
Bass H., 1968, ALGEBRAIC K THEORY
[3]   CONJUGACY IN NILPOTENT GROUPS [J].
BLACKBURN, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (01) :143-+
[4]  
CLIFF G, 1980, CAN J MATH, V3, P596
[5]  
Farrell F. T., 1970, P S PURE MATH, VXVII, P192
[6]   CONSTRUCTION OF A COUNTEREXAMPLE TO A CONJECTURE OF ZASSENHAUS [J].
KLINGLER, L .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (08) :2303-2330
[7]  
LAM TY, 1978, LECTURE NOTES MATH, V635
[8]  
LEVIN F, 1993, SERIES ALGEBRA, V1, P57
[9]   THE ELEMENTS OF FINITE-ORDER IN THE GROUP OF UNITS OF GROUP-RINGS OF FREE-PRODUCTS OF GROUPS [J].
LICHTMAN, AI ;
SEHGAL, SK .
COMMUNICATIONS IN ALGEBRA, 1989, 17 (09) :2223-2253
[10]   TORSION UNITS IN INTEGRAL GROUP-RINGS OF SOME METABELIAN-GROUPS .2. [J].
MARCINIAK, Z ;
RITTER, J ;
SEHGAL, SK ;
WEISS, A .
JOURNAL OF NUMBER THEORY, 1987, 25 (03) :340-352