Three-Dimensional Numerical Investigation of Nanofluids Flow in Microtube with Different Values of Heat Flux

被引:16
作者
Salman, B. H. [1 ]
Mohammed, H. A. [2 ]
Munisamy, K. M. [3 ]
Kherbeet, A. Sh. [3 ]
机构
[1] Limkokwing Univ Creat Technol, FABE, Cyperjaya 63000, Malaysia
[2] Univ Teknol Malaysia, Fac Mech Engn, Dept Thermofluids, Utm Skudai 81310, Johor Bahru, Malaysia
[3] Univ Tenaga Nas, Coll Engn, Dept Mech Engn, Kajang 43000, Selangor, Malaysia
来源
HEAT TRANSFER-ASIAN RESEARCH | 2015年 / 44卷 / 07期
关键词
nanofluids; nanoparticles; microtube; heat transfer augmentation; forced convection;
D O I
10.1002/htj.21139
中图分类号
O414.1 [热力学];
学科分类号
摘要
Forced convective laminar flow of different types of nanofluids such as Al2O3, CuO, SiO2, and ZnO, with different nanoparticle size 25, 45, 65, and 80 nm, and different volume fractions which ranged from 1% to 4% using ethylene glycol as base fluids were used. A three-dimensional microtube (MT) with 0.05 cm diameter and 10 cm in length with different values of heat fluxes at the wall is numerically investigated. This investigation covers Reynolds number (Re) in the range of 80 to 160. The results have shown that SiO2-EG nanofluid has the highest Nusselt number (Nu), followed by ZnO-EG, CuO-EG, Al2O3-EG, and finally pure EG. The Nu for all cases increases with the volume fraction but it decreases with the rise in the diameter of nanoparticles. In all configurations, the Nu increases with Re. In addition, no effect of heat flux values on the Nu was found. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:599 / 619
页数:21
相关论文
共 48 条
[1]   Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid [J].
Akbari, M. ;
Behzadmehr, A. ;
Shahraki, F. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2008, 29 (02) :545-556
[2]   Thermally developing microtube gas flow with axial conduction and viscous dissipation [J].
Aziz, A. ;
Niedbalski, Nick .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (03) :332-340
[3]   The effect of particle size on the thermal conductivity of alumina nanofluids [J].
Beck, Michael P. ;
Yuan, Yanhui ;
Warrier, Pramod ;
Teja, Amyn S. .
JOURNAL OF NANOPARTICLE RESEARCH, 2009, 11 (05) :1129-1136
[4]   Numerical investigation of nanofluids forced convection in circular tubes [J].
Bianco, V. ;
Chiacchio, F. ;
Manca, O. ;
Nardini, S. .
APPLIED THERMAL ENGINEERING, 2009, 29 (17-18) :3632-3642
[5]   Experimental study on compressible flow in microtubes [J].
Celata, G. P. ;
Cumo, M. ;
McPhail, S. J. ;
Tesfagabir, L. ;
Zummo, G. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2007, 28 (01) :28-36
[6]   Microtube liquid single-phase heat transfer in laminar flow [J].
Celata, G. P. ;
Cumo, M. ;
Marconi, V. ;
McPhail, S. J. ;
Zummo, G. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (19-20) :3538-3546
[7]   Characterization of fluid dynamic behaviour and channel wall effects in microtube [J].
Celata, GP ;
Cumo, M ;
McPhail, S ;
Zummo, G .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2006, 27 (01) :135-143
[8]   Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology [J].
Chen, Haisheng ;
Witharana, Sanjeeva ;
Jin, Yi ;
Kim, Chongyoup ;
Ding, Yulong .
PARTICUOLOGY, 2009, 7 (02) :151-157
[9]   Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls [J].
Corcione, Massimo .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (09) :1536-1546
[10]   Numerical analysis of roughness effect on microtube heat transfer [J].
Croce, G ;
D'Agaro, P .
SUPERLATTICES AND MICROSTRUCTURES, 2004, 35 (3-6) :601-616