CONVERGENCE-RATES FOR RECORD TIMES AND THE ASSOCIATED COUNTING PROCESS

被引:11
作者
GUT, A
机构
[1] Department of Mathematics, Uppsala University
关键词
central limit theorem; continuous distribution function; convergence rate; counting process; i.i.d. random variables; inversion; law of the iterated logarithm; record time; remainder term estimate; strong law;
D O I
10.1016/0304-4149(90)90047-V
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X1, X2,... be independent random variables with a common continuous distribution function. Rates of convergence in limit theorems for record times and the associated counting process are established. The proofs are based on inversion, a representation due to Williams and random walk methods. © 1990.
引用
收藏
页码:135 / 151
页数:17
相关论文
共 21 条
[1]  
[Anonymous], 1968, INTRO PROBABILITY TH
[2]   ON THE RATE OF POISSON CONVERGENCE [J].
BARBOUR, AD ;
HALL, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 95 (MAY) :473-480
[3]  
Baum L. E, 1962, T AM MATH SOC, V102, P187
[4]   CONVERGENCE RATES IN LAW OF LARGE NUMBERS [J].
BAUM, LE ;
KATZ, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (01) :108-&
[5]   CONVERGENCE RATES FOR LAW OF ITERATED LOGARITHM [J].
DAVIS, JA .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (05) :1479-&
[6]   CONVERGENCE RATES FOR PROBABILITIES OF MODERATE DEVIATIONS [J].
DAVIS, JA .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (06) :2016-&
[7]   A NEW PROOF OF THE HARTMAN-WINTNER LAW OF THE ITERATED LOGARITHM [J].
DEACOSTA, A .
ANNALS OF PROBABILITY, 1983, 11 (02) :270-276
[9]   ON THE COUPON COLLECTORS REMAINDER TERM [J].
ENGLUND, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 60 (03) :381-391
[10]  
Esseen C-G., 1945, ACTA MATH-DJURSHOLM, V77, P1, DOI [10.1007/BF02392223, DOI 10.1007/BF02392223]