ON A MORPHISM OF COMPACTIFICATIONS OF MODULI SCHEME OF VECTOR BUNDLES

被引:2
作者
Timofeeva, N., V [1 ]
机构
[1] Yaroslavl State Univ, Ul Sovetskaya 14, Yaroslavl 150000, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2015年 / 12卷
关键词
moduli space; semistable coherent sheaves; moduli functor; algebraic surface;
D O I
10.17377/semi.2015.12.047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A morphism of nonreduced Gieseker - Maruyama functor (of semistable coherent torsion-free sheaves) on the surface to the nonreduced functor of admissible semistable pairs with the same Hilbert polynomial, is constructed. This leads to the morphism of moduli schemes with possibly nonreduced scheme structures. As usually, we study subfunctors corresponding to main components of moduli schemes.
引用
收藏
页码:577 / 591
页数:15
相关论文
共 19 条
[1]  
Eisenbud D., 1995, GRADUATE TEXTS MATH, V150, DOI DOI 10.1007/978-1-4612-5350-1
[2]   MODULI OF VECTOR BUNDLES ON AN ALGEBRAIC SURFACE [J].
GIESEKER, D .
ANNALS OF MATHEMATICS, 1977, 106 (01) :45-60
[3]   Moduli of high rank vector bundles over surfaces [J].
Gieseker, D ;
Li, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (01) :107-151
[4]  
Grothendieck A., 1971, ELEMENTS GEOMETRIE A, VI
[5]  
Grothendieck A., 1971, LECT NOTES MATH
[6]  
Huybrechts D., 1997, ASPECTS MATH E, VE31
[7]  
MARUYAMA M, 1978, J MATH KYOTO U, V18, P557
[8]  
OGrady K. G., 1996, ARXIVALGGEOM9609015
[9]   Moduli of vector bundles on projective surfaces: Some basic results [J].
OGrady, KG .
INVENTIONES MATHEMATICAE, 1996, 123 (01) :141-207
[10]   CRITERIA OF FLATNESS AND PROJECTIVITY - TECHNIQUES FOR FLATTENING OF MODULES [J].
RAYNAUD, M ;
GRUSON, L .
INVENTIONES MATHEMATICAE, 1971, 13 (1-2) :1-&