COMPLETENESS OF EIGENFUNCTIONS OF STURM LIOUVILLE PROBLEMS WITH TRANSMISSION CONDITIONS

被引:7
作者
Wang, Aiping [1 ,2 ]
Sun, Jiong [1 ]
Hao, Xiaoling [1 ]
Yao, Siqin [1 ]
机构
[1] Inner Mongolia Univ, Dept Math, Hohhot 010021, Peoples R China
[2] Tianjin Univ Sci & Technol, Dept Math, Tianjin 300222, Peoples R China
关键词
Eigenparameter-dependent boundary conditions; transmission conditions; eigenvalues; eigenfunctions; completeness;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a class of Sturm-Liouville problems with eigenparameter-dependent boundary conditions and transmission conditions at an interior point. A self-adjoint linear operator A is defined in a suitable Hilbert space H such that the eigenvalues of such a problem coincide with those of A. We show that the operator A has only point spectrum, the eigenvalues of the problem are algebraically simple, and the eigenfunctions of A are complete in H.
引用
收藏
页码:299 / 312
页数:14
相关论文
共 20 条
[1]   Eigenvalues and eigenfunctions of discontinuous Sturm-Liouville problems with eigenparameter dependent boundary conditions [J].
Altinisik, N ;
Kadakal, M ;
Mukhtarov, OS .
ACTA MATHEMATICA HUNGARICA, 2004, 102 (1-2) :159-175
[2]   Elliptic eigenvalue problems with eigenparameter dependent boundary conditions [J].
Binding, P ;
Hryniv, R ;
Langer, H ;
Najman, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 174 (01) :30-54
[3]   Oscillation theory for indefinite Sturm-Liouville problems with eigenparameter-dependent boundary conditions [J].
Binding, PA ;
Browne, PJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :1123-1136
[4]   Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, II [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (01) :147-168
[5]  
Demirci M, 2004, INT J COMPUT COGN, V2, P101
[6]   2-POINT BOUNDARY-VALUE PROBLEMS WITH EIGENVALUE PARAMETER CONTAINED IN BOUNDARY-CONDITIONS [J].
FULTON, CT .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 77 :293-308
[7]  
GESZTESY F, 1985, J REINE ANGEW MATH, V362, P28
[8]   EXPANSION THEOREM FOR AN EIGENVALUE PROBLEM WITH EIGENVALUE PARAMETER IN THE BOUNDARY-CONDITION [J].
HINTON, DB .
QUARTERLY JOURNAL OF MATHEMATICS, 1979, 30 (117) :33-42
[9]  
Li YS, 1995, S 5 C MATH SOC INN M, P27
[10]  
Lykov A.V., 1965, THEORY HEAT MASS TRA