UPPER AND LOWER BOUNDS FOR APPROXIMATION IN THE GAP METRIC

被引:8
|
作者
GEORGIOU, TT [1 ]
SMITH, MC [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT ENGN,CAMBRIDGE CB2 1PZ,ENGLAND
关键词
D O I
10.1109/9.222308
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note establishes upper and lower bounds for the closest approximant of degree k < n in the gap metric to a plant of degree n. The bounds are expressed in terms of the singular values of two Hankel operators defined from the symbol of the graph of the plant. The question of robust stability and performance of feedback systems is examined in the context of approximation of plant and controller in the gap metric.
引用
收藏
页码:946 / 951
页数:6
相关论文
共 50 条
  • [1] A LOWER AND UPPER BOUND FOR THE GAP METRIC
    ZHU, SQ
    HAUTUS, MLJ
    PRAAGMAN, C
    PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 2337 - 2341
  • [2] Simple upper and lower bounds for the multivariate Laplace approximation
    Inglot, Tadeusz
    Majerski, Piotr
    JOURNAL OF APPROXIMATION THEORY, 2014, 186 : 1 - 11
  • [3] Lower and upper bounds to photonic band gap edges
    Vatsya, SR
    Nikumb, SK
    PHYSICAL REVIEW B, 2002, 66 (08):
  • [4] Upper and lower bounds for complete linkage in general metric spaces
    Arutyunova, Anna
    Grosswendt, Anna
    Roeglin, Heiko
    Schmidt, Melanie
    Wargalla, Julian
    MACHINE LEARNING, 2024, 113 (01) : 489 - 518
  • [5] Lower and Upper Bounds of Fractional Metric Dimension of Connected Networks
    Javaid, Muhammad
    Aslam, Muhammad Kamran
    Asjad, Muhammad Imran
    Almutairi, Bander N.
    Inc, Mustafa
    Almohsen, Bandar
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [6] Upper and lower bounds for complete linkage in general metric spaces
    Anna Arutyunova
    Anna Großwendt
    Heiko Röglin
    Melanie Schmidt
    Julian Wargalla
    Machine Learning, 2024, 113 : 489 - 518
  • [7] Sharper upper and lower bounds for an approximation scheme for CONSENSUS-PATTERN
    Brejová, B
    Brown, DG
    Harrower, IM
    López-Ortiz, A
    Vinar, T
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2005, 3537 : 1 - 10
  • [8] ON CONSTRUCTION OF UPPER AND LOWER BOUNDS FOR THE HOMO-LUMO SPECTRAL GAP
    Pavlikova, Sona
    Sevcovic, Daniel
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2019, 9 (01): : 53 - 69
  • [9] Lower Bounds for Local Approximation
    Goeoes, Mika
    Hirvonen, Juho
    Suomela, Jukka
    JOURNAL OF THE ACM, 2013, 60 (05)
  • [10] UPPER BOUNDS OF ROOT DISCRIMINANT LOWER BOUNDS
    Wong, Siman
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 277 (01) : 241 - 255