Balanced Milstein Methods for Ordinary SDEs

被引:67
作者
Kahl, Christian [1 ]
Schurz, Henri [2 ]
机构
[1] Univ Wuppertal, Dept Math, Gaussstr 20, D-42119 Wuppertal, Germany
[2] Southern Illinois Univ, Dept Math, Carbondale, IL 62901 USA
关键词
D O I
10.1163/156939606777488842
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Convergence, consistency, stability and pathwise positivity of balanced Milstein methods for numerical integration of ordinary stochastic differential equations (SDEs) are discussed. This family of numerical methods represents a class of highly efficient linear-implicit schemes which generate mean square converging numerical approximations with qualitative improvements and global rate 1.0 of mean square convergence, compared to commonly known numerical methods for SDEs with Lipschitzian coefficients.
引用
收藏
页码:143 / 170
页数:28
相关论文
共 23 条
[1]   On the discretization schemes for the CIR (and Bessel squared) processes [J].
Alfonsi, Aurelien .
MONTE CARLO METHODS AND APPLICATIONS, 2005, 11 (04) :355-384
[2]  
ANDERSEN L, 2001, EXTENDED LIBOR MARKE
[3]  
Andersen L. B. G., 2004, MOMENT EXPLOSIONS ST
[4]  
Arnold Ludwig, 1974, STOCHASTIC DIFFERENT
[5]  
Cox J., 1985, ECONOMETRICA, V3, P229
[6]  
Ito K., 1944, P IMP ACAD TOKYO, V20, P519, DOI [DOI 10.3792/PIA/1195572786, 10.3792/pia/1195572786]
[7]  
Ito K., 1951, NAGOYA MATH J, V3, P55, DOI DOI 10.1017/S0027763000012216
[8]  
Kahl C., 2004, POSITIVE NUMERICAL I
[9]  
Kahl C., 2004, BUWAMNA0410
[10]  
Khasminskij R.Z., 1980, STOCHASTIC STABILITY