THE DIOPHANTINE EQUATIONS 2(n) +/- 3.2(m)

被引:0
作者
Gueth, K. [1 ]
Szalay, L. [2 ,3 ]
机构
[1] Eotvos Lorand Univ, Karoli G Ter 4, H-9700 Szombathely, Hungary
[2] Univ West Hungary, Fac Forestry, Inst Math, H-9400 Sopron, Hungary
[3] J Selye Univ, Bratislavska Cesta 3322, Komarno, Slovakia
来源
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE | 2018年 / 87卷 / 02期
关键词
diophantine equations; polynomial-exponential equations; number of bits in squares;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the diophantine equations, 2(n)+/- 3.2(m) + 9 = x(2), and apart from the plus case with the condition, n < m we solve completely the problem. The method resembles the treatment was used, to solve the equation 2(n) + 2(m) + 1 = x(2). The more general problem 2(n) +/- alpha.2(m) + alpha(2) = x(2), where alpha is an odd prime such that 2 is a non-quadratic residue modulo alpha is also considered.
引用
收藏
页码:199 / 204
页数:6
相关论文
共 7 条
[1]   PERFECT POWERS WITH THREE DIGITS [J].
Bennett, Michael A. ;
Bugeaud, Yann .
MATHEMATIKA, 2014, 60 (01) :66-84
[2]   Perfect powers with few binary digits and related Diophantine problems, II [J].
Bennett, Michael A. ;
Bugeaud, Yann ;
Mignotte, Maurice .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 :525-540
[3]  
Berczes A., 2016, J COMB NUMBER THEORY, V8, P145
[4]   ON THE GENERALIZED RAMANUJAN-NAGELL EQUATION-I [J].
BEUKERS, F .
ACTA ARITHMETICA, 1981, 38 (04) :389-410
[5]   On the Diophantine equation 1+2a + xb = yn [J].
Hajdu, Lajos ;
Pink, Istvan .
JOURNAL OF NUMBER THEORY, 2014, 143 :1-13
[6]   The diophantine equation x2=pa±pb+1 [J].
Luca, F .
ACTA ARITHMETICA, 2004, 112 (01) :87-101
[7]   The equations 2N ± 2M ± 2L = z2 [J].
Szalay, L .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2002, 13 (01) :131-142