A COMBINATORIAL LEFSCHETZ FIXED-POINT FORMULA

被引:14
作者
SHIH, MH [1 ]
LEE, SN [1 ]
机构
[1] NATL CENT UNIV,INST MATH,CHUNGLI 32054,TAIWAN
关键词
D O I
10.1016/0097-3165(92)90057-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be any (finite) simplicial complex, and K′ a subdivision of K. Let φ{symbol}: K′ → K be a simplicial map, and, for all j ≥ 0, let φ{symbol}j denote the algebraical number of j-simplices G of K′ such that G ⊃ φ{symbol}(G). From Hopf's alternating trace formula it follows that φ{symbol}0 - φ{symbol}1 + φ{symbol}2 - ... = L(φ{symbol}), the Lefschetz number of the simplicial map φ{symbol}: X → X. Here X denotes the space of |K| (or |K′|). A purely combinatorial proof of the case K = a closed simplex (now L(φ{symbol}) = 1) is given, thus solving a problem posed by Ky Fan in 1978. © 1992.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 8 条
[1]   STRENGTHENING OF SPERNERS LEMMA APPLIED TO HOMOLOGY THEORY [J].
BROWN, AB ;
CAIRNS, SS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1961, 47 (01) :113-&
[2]  
Cohen D. I. A., 1967, J COMBINATORIAL THEO, V2, P585
[3]   SOME PROPERTIES OF CONVEX-SETS RELATED TO FIXED-POINT THEOREMS [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1984, 266 (04) :519-537
[4]  
FAN K, 1967, J COMB THEORY, V2, P588
[5]   A new proof of the Lefschetz formula on invariant points [J].
Hopf, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1928, 14 :149-153
[6]   Intersections and transformations of complexes and manifolds [J].
Lefschetz, Solomon .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1926, 28 (1-4) :1-49
[7]  
MAUNDER CRF, 1970, ALGEBRAIC TOPOLOGY
[8]  
Sperner E., 1928, ABH MATH SEM HAMBURG, V6, P265, DOI DOI 10.1007/BF02940617