ASYMPTOTIC STABILITY OF PLANAR RAREFACTION WAVES FOR VISCOUS CONSERVATION-LAWS IN SEVERAL DIMENSIONS

被引:55
作者
XIN, ZP
机构
关键词
D O I
10.2307/2001267
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:805 / 820
页数:16
相关论文
共 50 条
[31]   ON THE LINEARIZED STABILITY OF VISCOUS SHOCK PROFILES FOR SYSTEMS OF CONSERVATION-LAWS [J].
XIN, ZP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 100 (01) :119-136
[32]   NONLINEAR STABILITY OF OVERCOMPRESSIVE SHOCK-WAVES IN A ROTATIONALLY INVARIANT SYSTEM OF VISCOUS CONSERVATION-LAWS [J].
FREISTUHLER, H ;
LIU, TP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (01) :147-158
[35]   Asymptotic stability of Riemann waves for conservation laws [J].
Chen, GQ ;
Frid, H .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (01) :30-44
[36]   Asymptotic stability of Riemann waves for conservation laws [J].
G.-Q. Chen ;
H. Frid .
Zeitschrift für angewandte Mathematik und Physik ZAMP, 1997, 48 :30-44
[37]   TRANSITIONAL WAVES FOR CONSERVATION-LAWS [J].
ISAACSON, EL ;
MARCHESIN, D ;
PLOHR, BJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (04) :837-866
[38]   Asymptotic stability of viscous shock wave profiles for viscous conservation laws [J].
Dou, YP .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (07) :1401-1414
[39]   CONVERGENCE OF FINITE-DIFFERENCE SCHEMES FOR CONSERVATION-LAWS IN SEVERAL SPACE DIMENSIONS [J].
COQUEL, F ;
LEFLOCH, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (06) :455-460
[40]   MULTIPLE-MODE DIFFUSION WAVES FOR VISCOUS NONSTRICTLY HYPERBOLIC CONSERVATION-LAWS [J].
CHERN, IL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (01) :51-61