The Material Plasma Exposure eXperiment: Mission and conceptual design

被引:29
作者
Rapp, Juergen [1 ]
Lumsdaine, Arnold [1 ]
Beers, Clyde [1 ,2 ]
Biewer, Theodore [1 ]
Bigelow, Timothy [1 ]
Boyd, Ted [1 ]
Caneses, Juan [1 ]
Caughman, John [1 ]
Duckworth, Robert [1 ]
Goulding, Richard [1 ]
Hicks, William [1 ]
Lau, Cornwall [1 ]
Piotrowicz, Pawel [1 ,3 ]
West, David [1 ]
Youchison, Dennis [1 ]
机构
[1] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Knoxville, TN USA
[3] Univ Illinois, Urbana, IL USA
关键词
DEMO; Divertor; Linear devices; Materials; Plasma facing components; Plasma material interaction;
D O I
10.1016/j.fusengdes.2020.111586
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Mastering Plasma Material Interactions (PMI) is key for obtaining a high performance, high duty-cycle and safe operating fusion reactor. Numerous gaps exist in PMI which have to be addressed before a reactor can be built. In particular the lack of data at high ion fluence, fusion reactor divertor relevant plasma conditions and neutron displacement damage requires new experimental devices to be able to develop plasma facing materials and components. This has been recognized in the community and the U.S. fusion program is addressing this need with a new linear plasma device—the Material Plasma Exposure eXperiment (MPEX). MPEX will be a superconducting linear plasma device with magnetic fields of up to 2.5 T. The plasma source is a high-power helicon source (200 kW, 13.56 MHz). The electrons will be heated via Electron Bernstein Waves with microwaves using multiple 70 GHz gyrotrons (up to 600 kW in total). Ions will be heated via ion cyclotron heating in the so-called “magnetic beach heating” scheme in the frequency range of 6−9 MHz (up to 400 kW in total). An overview of the conceptual design and the project/design requirements is given. © 2020 Elsevier B.V.
引用
收藏
页数:10
相关论文
共 34 条
[1]  
[Anonymous], 2009, RES NEEDS WORKSH REN
[2]  
[Anonymous], 2007, GREENWALD PANEL FUSI
[3]  
[Anonymous], 2016, PLASM MAT INT WORKSH
[4]   Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX [J].
Beers, C. J. ;
Goulding, R. H. ;
Isler, R. C. ;
Martin, E. H. ;
Biewer, T. M. ;
Caneses, J. F. ;
Caughman, J. B. O. ;
Kafle, N. ;
Rapp, J. .
PHYSICS OF PLASMAS, 2018, 25 (01)
[5]   Utilization of O-X-B mode conversion of 28 GHz microwaves to heat core electrons in the upgraded Proto-MPEX [J].
Biewer, T. M. ;
Lau, C. ;
Bigelow, T. S. ;
Caneses, J. F. ;
Caughman, J. B. O. ;
Goulding, R. H. ;
Kafle, N. ;
Kaufman, M. C. ;
Rapp, J. .
PHYSICS OF PLASMAS, 2019, 26 (05)
[6]   Observations of electron heating during 28 GHz microwave power application in proto-MPEX [J].
Biewer, T. M. ;
Bigelow, T. S. ;
Caneses, J. F. ;
Diem, S. J. ;
Green, D. L. ;
Kafle, N. ;
Rapp, J. .
PHYSICS OF PLASMAS, 2018, 25 (02)
[7]   Ion Fluxes and Neutral Gas Ionization Efficiency of the 100-kW Light-Ion Helicon Plasma Source Concept for the Material Plasma Exposure eXperiment [J].
Caneses, J. F. ;
Piotrowicz, P. A. ;
Biewer, T. M. ;
Goulding, R. H. ;
Lau, C. ;
Showers, M. ;
Rapp, J. .
FUSION SCIENCE AND TECHNOLOGY, 2019, 75 (07) :683-689
[8]   Differential pumping requirements for the light-ion helicon source and heating systems of Proto-MPEX [J].
Caneses, J. F. ;
Piotrowicz, P. A. ;
Biewer, T. M. ;
Caughman, J. B. O. ;
Goulding, R. H. ;
Kafle, N. ;
Rapp, J. .
PHYSICS OF PLASMAS, 2018, 25 (08)
[9]   Plasma source development for fusion-relevant material testing [J].
Caughman, John B. O. ;
Goulding, Richard H. ;
Biewer, Theodore M. ;
Bigelow, Timothy S. ;
Campbell, Ian H. ;
Caneses, Juan ;
Diem, Stephanie J. ;
Fadnek, Andy ;
Fehling, Dan T. ;
Isler, Ralph C. ;
Martin, Elijah H. ;
Parish, Chad M. ;
Rapp, Juergen ;
Wang, Kun ;
Beers, Clyde J. ;
Donovan, David ;
Kafle, Nischal ;
Ray, Holly B. ;
Shaw, Guinevere C. ;
Showers, Melissa A. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2017, 35 (03)
[10]  
Department of Energy, DOESC0149