NON-CENTRAL LIMIT THEOREMS AND CONVERGENCE RATES

被引:0
作者
Vo Anh [1 ]
Olenko, Andriy [2 ]
Vaskovych, V. [2 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] La Trobe Univ, Dept Math & Stat, Melbourne, Vic 3086, Australia
基金
澳大利亚研究理事会;
关键词
Non-central limit theorems; Rate of convergence; Random field; Long-range dependence; Rosenblatt-type distributions;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper surveys some recent developments in non-central limit theorems for long-range dependent random processes and fields. We describe an increasing domain framework for asymptotic behavior of functionals of random processes and fields. Recent results on the rate of convergence to the Hermite-type distributions in non-central limit theorems are presented. The use of these results is demonstrated through an application to the case of Rosenblatt-type distributions.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 26 条
[1]  
Anh V., RATE CONVERGEN UNPUB
[2]   On the rate of convergence to Rosenblatt-type distribution [J].
Anh, Vo ;
Leonenko, Nikolai ;
Olenko, Andriy .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (01) :111-132
[3]   MULTIVARIATE LIMIT THEOREMS IN THE CONTEXT OF LONG-RANGE DEPENDENCE [J].
Bai, Shuyang ;
Taqqu, Murad S. .
JOURNAL OF TIME SERIES ANALYSIS, 2013, 34 (06) :717-743
[4]  
Bingham NH., 1987, REGULAR VARIATION, DOI 10.1017/CBO9780511721434
[5]  
Breton JC, 2011, PROBAB MATH STAT-POL, V31, P301
[6]   NON-CENTRAL LIMIT-THEOREMS FOR NONLINEAR FUNCTIONALS OF GAUSSIAN FIELDS [J].
DOBRUSHIN, RL ;
MAJOR, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (01) :27-52
[7]   GAUSSIAN AND THEIR SUBORDINATED SELF-SIMILAR RANDOM GENERALIZED FIELDS [J].
DOBRUSHIN, RL .
ANNALS OF PROBABILITY, 1979, 7 (01) :1-28
[8]   CLT AND OTHER LIMIT-THEOREMS FOR FUNCTIONALS OF GAUSSIAN-PROCESSES [J].
GIRAITIS, L ;
SURGAILIS, D .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (02) :191-212
[9]  
Giraitis L., 1983, LITH MATH J, V23, P31
[10]   LIMIT THEOREMS FOR WEIGHTED NONLINEAR TRANSFORMATIONS OF GAUSSIAN STATIONARY PROCESSES WITH SINGULAR SPECTRA [J].
Ivanov, Alexander V. ;
Leonenko, Nikolai ;
Ruiz-Medina, Maria D. ;
Savich, Irina N. .
ANNALS OF PROBABILITY, 2013, 41 (02) :1088-1114