LONG-TIME BEHAVIOR OF ARBITRARY ORDER CONTINUOUS-TIME GALERKIN SCHEMES FOR SOME ONE-DIMENSIONAL PHASE-TRANSITION PROBLEMS

被引:22
作者
FRENCH, DA [1 ]
JENSEN, S [1 ]
机构
[1] UNIV MARYLAND,DEPT MATH & STAT,CATONSVILLE,MD 21228
关键词
D O I
10.1093/imanum/14.3.421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The long-time behaviour of continuous time Galerkin (CTG) approximations of some well-known one-dimensional non-linear evolution problems which model phase transitions are analyzed. These numerical schemes are fully discrete and of arbitrary order.
引用
收藏
页码:421 / 442
页数:22
相关论文
共 22 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]  
AKRIVIS GD, 1991, RAIRO-MATH MODEL NUM, V25, P643
[3]   ASYMPTOTIC-BEHAVIOR AND CHANGES OF PHASE IN ONE-DIMENSIONAL NON-LINEAR VISCOELASTICITY [J].
ANDREWS, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (02) :306-341
[4]   FULLY DISCRETE GALERKIN METHODS FOR THE KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (07) :859-884
[5]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[6]  
Ciarlet P.G., 1980, FINITE ELEMENT METHO
[7]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[8]   MIXED INITIAL-BOUNDARY VALUE PROBLEM FOR EQUATIONS OF NONLINEAR 1-DIMENSIONAL VISCOELASTICITY [J].
DAFERMOS, CM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1969, 6 (01) :71-&
[9]  
ELLIOTT CM, 1992, IMA973 PREPR
[10]  
ELLIOTT CM, 1989, MATH MODELS PHASE CH, V88