CURVATURE AND PARAMETRIC SENSITIVITY IN MODELS FOR ADSORPTION IN MICROPORES

被引:432
作者
SAITO, A [1 ]
FOLEY, HC [1 ]
机构
[1] UNIV DELAWARE,CTR CATALYT SCI & TECHNOL,DEPT CHEM ENGN,NEWARK,DE 19716
关键词
D O I
10.1002/aic.690370312
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The sensitivity of the calculated micropore size of zeolite Y in a fluidized cracking catalyst based on empirical models for argon adsorption has been tested by examining the effect of curvature and by systematically verifying the magnitude of physical magnitude of physical constants in the model equations. With a consistent set of physical parameters the slit model provided a pore size value of 0.45 nm, while the new cylindrical models provided values of 0.69 and 0.74 nm. The latter values are found to correspond well with the known aperture size of zeolite Y, 0.74 nm. By separately varying the magnitudes of five of the physical constants in the model over a range of +/- 30%, it was concluded that the diameter of the oxide ion at the surface had a large effect on the calculated pore size, while the other parameters had only moderate to small effects. Preliminary application of the cylindrical pore model to isotherms of argon on other zeolites and molecular sieves leads to promising results, especially for medium to large pore zeolites. These results suggest that the cylindrical pore model is a useful means for the transformation of argon adsorption data on a zeolite into a micropore size distribution.
引用
收藏
页码:429 / 436
页数:8
相关论文
共 26 条