SOBOLEV SPACES OVER LOOP-GROUPS

被引:21
作者
AIDA, S
机构
[1] Mathematical Institute, Tohoku University
关键词
D O I
10.1006/jfan.1995.1006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the properties of Orstein-Uhlenbeck operators over loop groups which are naturally defined by the group structure. We establish the hypoellipticity of the Laplacians acting on the space of tensors. By using this, we show the essential self-adjointness of the Laplacians acting on the real valued function spaces. (C) 1995 Academic Press Inc.
引用
收藏
页码:155 / 172
页数:18
相关论文
共 20 条
[1]  
ACOSTA E, 1992, SOBOLEV SPACES WIENE
[2]   ON THE ORNSTEIN-UHLENBECK OPERATORS ON WIENER-RIEMANNIAN MANIFOLDS [J].
AIDA, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 116 (01) :83-110
[3]   CERTAIN GRADIENT FLOWS AND SUBMANIFOLDS IN WIENER-SPACES [J].
AIDA, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) :346-372
[4]  
AIRAULT H, 1991, B SCI MATH, V115, P185
[5]  
DRIVER B, IN PRESS T AM MATH S
[7]  
DRIVER BK, 1992, CR ACAD SCI I-MATH, V315, P603
[8]  
FREED DS, 1988, J DIFFER GEOM, V28, P223
[9]  
GETZLER E, 1989, B SCI MATH, V113, P151
[10]   UNIQUENESS OF GROUND-STATES FOR SCHRODINGER-OPERATORS OVER LOOP-GROUPS [J].
GROSS, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) :373-441