A NOTE ON COMPUTING EIGENVALUES OF BANDED HERMITIAN TOEPLITZ MATRICES

被引:4
|
作者
TRENCH, WF
机构
关键词
TOEPLITZ; HERMITIAN; BANDED; EIGENVALUE; EIGENVECTOR;
D O I
10.1137/0914015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is pointed out that the author's O(n2) algorithm for computing individual eigenvalues of an arbitrary n x n Hermitian Toeplitz matrix T(n) reduces to an O(rn) algorithm if T(n) is banded, with bandwidth r.
引用
收藏
页码:248 / 252
页数:5
相关论文
共 50 条
  • [41] A NEW ITERATION FOR COMPUTING THE EIGENVALUES OF SEMISEPARABLE (PLUS DIAGONAL) MATRICES
    Vandebril, Raf
    Van Barel, Marc
    Mastronardi, Nicola
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 33 : 126 - 150
  • [42] Asymptotics of eigenvalues for Toeplitz matrices with rational symbols that have a minimum of the 4th order
    Barrera, Mauricio
    Grudsky, Sergei M.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (03) : 556 - 580
  • [43] Another neural network based approach for computing eigenvalues and eigenvectors of real skew-symmetric matrices
    Tang, Ying
    Li, Jianping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) : 1385 - 1392
  • [44] A Note on Eigenvalues and Asymmetric Graphs
    Lotfi, Abdullah
    Mowshowitz, Abbe
    Dehmer, Matthias
    AXIOMS, 2023, 12 (06)
  • [45] Computing eigenvalues of quasi-rational Said-Ball-Vandermonde matrices
    Ma, Xiaoxiao
    Xiao, Yingqing
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (05)
  • [46] Spectral behavior of preconditioned non-Hermitian multilevel block Toeplitz matrices with matrix-valued symbol
    Donatelli, Marco
    Garoni, Carlo
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    Sesana, Debora
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 158 - 173
  • [47] Eigenvalues of Large Matrices
    ZHAO Yumin Department of Physics Shanghai Jiaotong University Shanghai China Center of Theoretical Nuclear Physics National Laboratory of Heavy Ion Research Facility in Lanzhou Lanzhou China
    原子核物理评论, 2009, 26(S1) (S1) : 165 - 167
  • [48] ACCURATE INVERSES FOR COMPUTING EIGENVALUES OF EXTREMELY ILL-CONDITIONED MATRICES AND DIFFERENTIAL OPERATORS
    Ye, Qiang
    MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 237 - 259
  • [49] ASYMPTOTIC PSEUDOMODES OF TOEPLITZ MATRICES
    Boettcher, Albrecht
    Grudsky, Sergei
    Unterberger, Jeremie
    OPERATORS AND MATRICES, 2008, 2 (04): : 525 - 541
  • [50] PRECONDITIONING BLOCK TOEPLITZ MATRICES
    Huckle, Thomas K.
    Noutsos, Dimitrios
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 29 : 31 - 45