A NOTE ON COMPUTING EIGENVALUES OF BANDED HERMITIAN TOEPLITZ MATRICES

被引:4
|
作者
TRENCH, WF
机构
关键词
TOEPLITZ; HERMITIAN; BANDED; EIGENVALUE; EIGENVECTOR;
D O I
10.1137/0914015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is pointed out that the author's O(n2) algorithm for computing individual eigenvalues of an arbitrary n x n Hermitian Toeplitz matrix T(n) reduces to an O(rn) algorithm if T(n) is banded, with bandwidth r.
引用
收藏
页码:248 / 252
页数:5
相关论文
共 50 条
  • [31] UPPER HESSENBERG AND TOEPLITZ BOHEMIAN MATRIX SEQUENCES: A NOTE ON THEIR ASYMPTOTICAL EIGENVALUES AND SINGULAR VALUES
    Bogoya, Manuel
    Serra-Capizzano, Stefano
    Trotti, Ken
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 55 : 76 - 91
  • [32] Eigenvalues of even very nice Toeplitz matrices can be unexpectedly erratic
    Barrera, Mauricio
    Boettcher, Albrecht
    Grudsky, Sergei M.
    Maximenko, Egor A.
    DIVERSITY AND BEAUTY OF APPLIED OPERATOR THEORY, 2018, 268 : 51 - 77
  • [33] A Numerical Method for Determining the Eigenvalues and Eigenvectors of Hermitian Matrices in The Real Operation
    Zhang, Zhi-Hai
    Lou, Xi-juan
    Pang, Pei-lin
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 122 - 125
  • [34] Minimax Principle for Eigenvalues of Dual Quaternion Hermitian Matrices and Generalized Inverses of Dual Quaternion Matrices
    Ling, Chen
    Qi, Liqun
    Yan, Hong
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (13) : 1371 - 1394
  • [35] COFACTORS AND EIGENVECTORS OF BANDED TOEPLITZ MATRICES: TRENCH FORMULAS VIA SKEW SCHUR POLYNOMIALS
    Maximenko, Egor A.
    Alberto Moctezuma-Salazar, Mario
    OPERATORS AND MATRICES, 2017, 11 (04): : 1149 - 1169
  • [36] FAST TRIANGULAR FACTORIZATION AND INVERSION OF HERMITIAN, TOEPLITZ, AND RELATED MATRICES WITH ARBITRARY RANK PROFILE
    PAL, D
    KAILATH, T
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) : 1016 - 1042
  • [37] FAST PARALLELIZABLE METHODS FOR COMPUTING INVARIANT SUBSPACES OF HERMITIAN MATRICES
    Zhenyue Zhang Department of Mathematics
    JournalofComputationalMathematics, 2007, (05) : 583 - 594
  • [38] Fast parallelizable methods for computing invariant subspaces of Hermitian matrices
    Zhang, Zhenyue
    Zha, Hongyuan
    Ying, Wenlong
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2007, 25 (05) : 583 - 594
  • [39] COMPUTING THE EIGENVALUES OF SYMMETRIC TRIDIAGONAL MATRICES VIA A CAYLEY TRANSFORMATION
    Aurentz, Jared L.
    Mach, Thomas
    Vandebril, Raf
    Watkins, David S.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2017, 46 : 447 - 459
  • [40] Ovals of Cassini for Toeplitz matrices
    Melman, A.
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (02) : 189 - 199