It is pointed out that the author's O(n2) algorithm for computing individual eigenvalues of an arbitrary n x n Hermitian Toeplitz matrix T(n) reduces to an O(rn) algorithm if T(n) is banded, with bandwidth r.
机构:
Hangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou 310018, Peoples R China
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R ChinaHangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou 310018, Peoples R China
Qi, Liqun
Cui, Chunfeng
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Math Sci, LMIB, Minist Educ, Beijing 100191, Peoples R ChinaHangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou 310018, Peoples R China
机构:
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
Vecharynski, Eugene
Knyazev, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Mitsubishi Elect Res Labs, Cambridge, MA 02139 USAUniv Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA