Efficient and privacy-preserving biometric identification in cloud

被引:13
|
作者
Hahn, Changhee [1 ]
Hur, Junbeom [1 ]
机构
[1] Korea Univ, Dept Comp Sci & Engn, Seoul, South Korea
来源
ICT EXPRESS | 2016年 / 2卷 / 03期
基金
新加坡国家研究基金会;
关键词
Privacy; Biometrics; Identification; Cloud;
D O I
10.1016/j.icte.2016.08.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid growth in the development of smart devices equipped with biometric sensors, client identification system using biometric traits are widely adopted across various applications. Among many biometric traits, fingerprint-based identification systems have been extensively studied and deployed. However, to adopt biometric identification systems in practical applications, two main obstacles in terms of efficiency and client privacy must be resolved simultaneously. That is, identification should be performed at an acceptable time, and only a client should have access to his/her biometric traits, which are not revocable if leaked. Until now, multiple studies have demonstrated successful protection of client biometric data; however, such systems lack efficiency that leads to excessive time utilization for identification. The most recently researched scheme shows efficiency improvements but reveals client biometric traits to other entities such as biometric database server. This violates client privacy. In this paper, we propose an efficient and privacy-preserving fingerprint identification scheme by using cloud systems. The proposed scheme extensively exploits the computation power of a cloud so that most of the laborious computations are performed by the cloud service provider. According to our experimental results on an Amazon EC2 cloud, the proposed scheme is faster than the existing schemes and guarantees client privacy by exploiting symmetric homomorphic encryption. Our security analysis shows that during identification, the client fingerprint data is not disclosed to the cloud service provider or fingerprint database server. (C) 2016 The Korean Institute of Communications Information Sciences. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:135 / 139
页数:5
相关论文
共 50 条
  • [21] Efficient Privacy-Preserving Forensic Method for Camera Model Identification
    Chen, Yanli
    Qiao, Tong
    Retraint, Florent
    Hu, Gengran
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 2378 - 2393
  • [22] PolyCosGraph: A Privacy-Preserving Cancelable EEG Biometric System
    Wang, Min
    Wang, Song
    Hu, Jiankun
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (05) : 4258 - 4272
  • [23] Outsourcing Privacy-Preserving Social Networks to a Cloud
    Wang, Guojun
    Liu, Qin
    Li, Feng
    Yang, Shuhui
    Wu, Jie
    2013 PROCEEDINGS IEEE INFOCOM, 2013, : 2886 - 2894
  • [24] Efficient Privacy-Preserving Link Discovery
    He, Xiaoyun
    Vaidya, Jaideep
    Shafiq, Basit
    Adam, Nabil
    Terzi, Evimaria
    Grandison, Tyrone
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, 5476 : 16 - +
  • [25] Efficient privacy-preserving implicit authentication
    Blanco-Justicia, Alberto
    Domingo-Ferrer, Josep
    COMPUTER COMMUNICATIONS, 2018, 125 : 13 - 23
  • [26] Achieving Efficient and Privacy-Preserving Reverse Skyline Query Over Single Cloud
    Peng, Yubo
    Li, Xiong
    Gu, Ke
    Chen, Jinjun
    Das, Sajal K.
    Zhang, Xiaosong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (01) : 29 - 44
  • [27] Privacy-Preserving Data Sharing in Cloud Computing
    王慧
    Journal of Computer Science & Technology, 2010, 25 (03) : 401 - 414
  • [28] Privacy-Preserving Data Sharing in Cloud Computing
    Wang, Hui
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2010, 25 (03) : 401 - 414
  • [29] Privacy-Preserving Protocol for Data Stored in the Cloud
    Hongyi Su Geng Yang Dawei Li (College of Computer Science
    ZTE Communications, 2011, 9 (02) : 36 - 38
  • [30] Towards Efficient and Privacy-Preserving High-Dimensional Range Query in Cloud
    Sun, Lili
    Zhang, Yonggang
    Zheng, Yandong
    Song, Weiyu
    Lu, Rongxing
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (05) : 3766 - 3781