LOCAL AND GLOBAL-SOLUTIONS OF THE STEFAN-TYPE PROBLEM

被引:0
作者
TABISZ, K
机构
关键词
D O I
10.1016/0022-247X(81)90197-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:306 / 316
页数:11
相关论文
共 12 条
[1]  
BOGGS PT, 1978, MOVING BOUNDARY PROB
[2]   GENERAL FREE-BOUNDARY PROBLEMS FOR HEAT EQUATION .1. [J].
FASANO, A ;
PRIMICERIO, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 57 (03) :694-723
[3]  
FRIEDMAN A, 1975, INDIANA U MATH J, V24, P1005, DOI 10.1512/iumj.1975.24.24086
[4]   CONVEXITY OF FREE BOUNDARY IN STEFAN PROBLEM AND IN DAM PROBLEM [J].
FRIEDMAN, A ;
JENSEN, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 67 (01) :1-24
[5]  
FRIEDMAN A, 1959, J MATH MECH, V8, P499
[6]   CLASS OF PARABOLIC QUASI-VARIATIONAL INEQUALITIES .2. [J].
FRIEDMAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1976, 22 (02) :379-401
[7]  
KYNER WT, 1959, J MATH MECH, V8, P483
[8]  
RUBINSTEIN L, 1967, STEFAN PROBLEM
[9]  
Saul'yev V.K., 1964, INTEGRATION EQUATION
[10]  
TABISZ K, 1979, B ACAD POLON SCI MAT, V27, P847