HOMOTOPIES EXPLOITING NEWTON POLYTOPES FOR SOLVING SPARSE POLYNOMIAL SYSTEMS

被引:125
作者
VERSCHELDE, J
VERLINDEN, P
COOLS, R
机构
[1] Katholieke Univ Leuven, Leuven
关键词
POLYNOMIAL SYSTEMS; HOMOTOPY CONTINUATION METHODS; MIXED VOLUME; BKK BOUND;
D O I
10.1137/0731049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the problem of finding all isolated solutions of a polynomial system. The BKK bound, defined as the mixed volume of the Newton polytopes of the polynomials in system, is a sharp upper bound for the number of isolated solutions in C0n, C0 = C\{0}, of a polynomial system with a sparse monomial structure. First an algorithm is described for computing the BKK bound. Following the lines of Bernshtein's proof, the algorithmic construction of the cheater's homotopy or the coefficient homotopy is obtained. The mixed homotopy methods can be combined with the random product start systems based on a generalized Bezout number. Applications illustrate the effectiveness of the new approach.
引用
收藏
页码:915 / 930
页数:16
相关论文
共 42 条
[1]  
ALLGOWER EL, 1990, NUMERICAL CONTINUATI, V13
[2]   A PIVOTING ALGORITHM FOR CONVEX HULLS AND VERTEX ENUMERATION OF ARRANGEMENTS AND POLYHEDRA [J].
AVIS, D ;
FUKUDA, K .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (03) :295-313
[3]  
BECKERS M, 1985, THESIS BELGIUM
[4]   FIBER POLYTOPES [J].
BILLERA, LJ ;
STURMFELS, B .
ANNALS OF MATHEMATICS, 1992, 135 (03) :527-549
[5]  
Blomberg H., 1983, MATH SCI ENG, V166
[6]  
Bonnesen T., 1934, THEORIE KONVEXEN KOR
[7]   2 ALGORITHMS FOR DETERMINING VOLUMES OF CONVEX POLYHEDRA [J].
COHEN, J ;
HICKEY, T .
JOURNAL OF THE ACM, 1979, 26 (03) :401-414
[8]  
EDELSBRUNNER H, 1987, ETACS MONOGRAPHS THE
[9]  
HUBER B, 1992, AUG MSI WORKSH REAL
[10]  
Khovanskii AG., 1978, FUNKTS ANAL PRIL, V12, P38