On Transferring Model Theoretic Theorems of L-infinity,L-omega in the Category of Sets to a Fixed Grothendieck Topos

被引:0
作者
Ackerman, Nathanael Leedom [1 ]
机构
[1] Harvard Univ, Dept Math, One Oxford St, Cambridge, MA 02138 USA
关键词
Model theory; infinitary logic; Grothendieck topos; Lowenheim-Skolem; completeness; Barwise compactness;
D O I
10.1007/s11787-014-0105-5
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
Working in a fixed Grothendieck topos Sh(C, J(C)) we generalize L-infinity,L-omega, to allow our languages and formulas to make explicit reference to Sh(C, J(C)). We likewise generalize the notion of model. We then show how to encode these generalized structures by models of a related sentence of L-infinity,L-omega, in the category of sets and functions. Using this encoding we prove analogs of several results concerning L-infinity,L-omega, such as the downward Lowenheim-Skolem theorem, the completeness theorem and Barwise compactness.
引用
收藏
页码:345 / 391
页数:47
相关论文
共 10 条
[1]   Completeness in generalized ultrametric spaces [J].
Ackerman N.L. .
P-Adic Numbers, Ultrametric Analysis, and Applications, 2013, 5 (2) :89-105
[2]  
Ackerman NL, 2011, CRM PROC & LECT NOTE, V53, P1
[3]   Relativized Grothendieck topoi [J].
Ackerman, Nathanael Leedom m .
ANNALS OF PURE AND APPLIED LOGIC, 2010, 161 (10) :1299-1312
[4]  
Barwise J., 1975, PERSPECTIVES MATH LO
[5]  
Ben-Yaacov I., 2008, LONDON MATH SOC LECT, V350, P315
[6]  
Hodges W., 1993, MODEL THEORY, V42
[7]  
Jech T.J., 2003, SET THEORY 3 MILLENN
[8]  
Keisler H.J., 1971, STUDIES LOGIC FDN MA, V62
[9]  
Mac Lane S., 1994, SHEAVES GEOMETRY LOG
[10]  
MAC LANE S, 1998, CATEGORIES WORKING M, V5