MULTIPLE-SOLITON SOLUTIONS OF EINSTEIN EQUATIONS

被引:9
作者
ECONOMOU, A
TSOUBELIS, D
机构
关键词
D O I
10.1063/1.528597
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1562 / 1569
页数:8
相关论文
共 50 条
[41]   Multiple-soliton solutions and lumps of a (3+1)-dimensional generalized KP equation [J].
Yu, Jianping ;
Wang, Fudong ;
Ma, Wenxiu ;
Sun, Yongli ;
Khalique, Chaudry Masood .
NONLINEAR DYNAMICS, 2019, 95 (02) :1687-1692
[42]   Extended multi-soliton solutions of the Einstein field equations [J].
Manko, VS ;
Ruiz, E .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (07) :2007-2016
[43]   STATIONARY AXISYMMETRIC ONE-SOLITON SOLUTIONS OF THE EINSTEIN EQUATIONS [J].
VERDAGUER, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (04) :1261-1270
[44]   N-SOLITON SOLUTIONS OF EINSTEIN-MAXWELL-EQUATIONS [J].
ALEKSEEV, GA .
JETP LETTERS, 1980, 32 (04) :277-279
[45]   Necessary conditions of coupled mkdV-BLMP system for multiple-soliton solutions to exist [J].
Jaradat, H. M. ;
Syam, Muhammed ;
Alquran, Marwan .
ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) :2133-2137
[46]   Integrable (3+1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions [J].
Abdul-Majid Wazwaz .
Nonlinear Dynamics, 2022, 109 :1929-1934
[47]   A two-mode coupled Korteweg–de Vries: multiple-soliton solutions and other exact solutions [J].
H. M. Jaradat ;
Muhammed Syam ;
Marwan Alquran .
Nonlinear Dynamics, 2017, 90 :371-377
[48]   2-SOLITON SOLUTIONS OF THE EINSTEIN-MAXWELL-EQUATIONS [J].
DAGOTTO, AD ;
GLEISER, RJ ;
NICASIO, CO .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (05) :961-973
[49]   Integrability of the coupled cubic-quintic complex Ginzburg-Landau equations and multiple-soliton solutions via mathematical methods [J].
Selima, Ehab S. ;
Seadawy, Aly R. ;
Yao, Xiaohua ;
Essa, F. A. .
MODERN PHYSICS LETTERS B, 2018, 32 (04)
[50]   Multiple-soliton solutions and lumps of a (3+1)-dimensional generalized KP equation [J].
Jianping Yu ;
Fudong Wang ;
Wenxiu Ma ;
Yongli Sun ;
Chaudry Masood Khalique .
Nonlinear Dynamics, 2019, 95 :1687-1692