UNICITY IN LINEAR OPTIMIZATION

被引:7
作者
GOBERNA, MA [1 ]
LOPEZ, MA [1 ]
TODOROV, M [1 ]
机构
[1] BULGARIAN ACAD SCI,INST MATH,PLOVDIV,BULGARIA
关键词
LINEAR OPTIMIZATION; SEMIINFINITE PROGRAMMING; UNICITY; STRONG UNICITY; FARKAS-MINKOWSKI SYSTEMS;
D O I
10.1007/BF02193460
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper deals with the conditions for the uniqueness of the optimal solution of an optimization problem for which the objective function is linear and the feasible set is a closed convex set in a finite-dimensional space. Some of these conditions, such as strong unicity and w-unicity (a new transition concept), involve only the feasible set. Others are related to the properties of the chosen linear representation. To some extent, the paper surveys the literature about unicity and strong unicity in linear semi-infinite programming.
引用
收藏
页码:37 / 56
页数:20
相关论文
共 19 条
[2]  
Brosowski B, 1982, PARAMETRIC SEMIINFIN
[3]  
BROSOWSKI B, 1983, REFINEMENT KOLMOGORO, P241
[4]   ON REPRESENTATIONS OF SEMI-INFINITE PROGRAMS WHICH HAVE NO DUALITY GAPS [J].
CHARNES, A ;
COOPER, WW ;
KORTANEK, K .
MANAGEMENT SCIENCE, 1965, 12 (01) :113-121
[5]   DUALITY IN SEMI-INFINITE PROGRAMS AND SOME WORKS OF HAAR AND CARATHEODORY [J].
CHARNES, A ;
COOPER, WW ;
KORTANEK, K .
MANAGEMENT SCIENCE, 1963, 9 (02) :209-228
[6]  
CHRISTOV G, 1988, MATH BALKANICA, V2, P182
[7]   STRONG UNICITY AND ALTERNATION FOR LINEAR OPTIMIZATION [J].
FISCHER, T .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 69 (02) :251-267
[8]   FARKAS-MINKOWSKI SYSTEMS IN SEMI-INFINITE PROGRAMMING [J].
GOBERNA, MA ;
LOPEZ, MA ;
PASTOR, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 1981, 7 (04) :295-308
[9]   BOUNDEDNESS RELATIONS IN LINEAR SEMI-INFINITE PROGRAMMING [J].
GOBERNA, MA .
ADVANCES IN APPLIED MATHEMATICS, 1987, 8 (01) :53-68
[10]  
GOBERNA MA, 1992, J OPTIM THEORY APPL, V70, P225