Classifications and Isolation Phenomena of Bi-Harmonic Maps and Bi-Yang-Mills Fieds

被引:31
作者
Ichiyama, Toshiyuki [1 ]
Inoguchi, Jun-ichi [2 ]
Urakawa, Hajime [3 ]
机构
[1] Asia Univ, Fac Econ, Sakai 5-24-10, Musashino, Tokyo 1808624, Japan
[2] Yamagata Univ, Fac Sci, Dept Math, Yamagata 9908560, Japan
[3] Tohoku Univ, Grad Sch Informat Sci, Div Math, Sendai, Miyagi 9808579, Japan
来源
NOTE DI MATEMATICA | 2010年 / 30卷 / 02期
关键词
biharmonic maps; harmonic maps; Yang-Mills fields;
D O I
10.1285/i15900932v30n2p15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classifications of all biharmonic isoparametric hypersurfaces in the unit sphere, and all biharmonic homogeneous real hypersurfaces in the complex or quaternionic projective spaces are shown. Answers in case of bounded geometry to Chen's conjecture or Caddeo, Montaldo and Piu's one on biharmonic maps into a space of non positive curvature are given. Gauge field analogue is shown, indeed, the isolation phenomena of bi-Yang-Mills fields are obtained.
引用
收藏
页码:15 / 48
页数:34
相关论文
共 29 条
  • [1] Bejan C. L., 2005, TOPICS ALMOST HERMIT, P41
  • [2] BERNDT J, 1991, J REINE ANGEW MATH, V419, P9
  • [3] STABILITY AND ISOLATION PHENOMENA FOR YANG-MILLS FIELDS
    BOURGUIGNON, JP
    LAWSON, HB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) : 189 - 230
  • [4] Caddeo R., 2001, CONTEMP MATH, V288, P286, DOI [10.1090/conm/288/04836, DOI 10.1090/CONM/288/04836]
  • [5] Chen BY, 1991, SOOCHOW J MATH, V17, P169
  • [6] DODZIUK J, 1982, COMPOS MATH, V47, P165
  • [7] Eells J., 1978, B LOND MATH SOC, V10, P1, DOI [10.1112/blms/10.1.1, DOI 10.1112/BLMS/10.1.1]
  • [8] A SPECIAL STOKES THEOREM FOR COMPLETE RIEMANNIAN MANIFOLDS
    GAFFNEY, MP
    [J]. ANNALS OF MATHEMATICS, 1954, 60 (01) : 140 - 145
  • [9] Hsiang Wu-yi, 1971, J DIFFERENTIAL GEOME, V5, P1
  • [10] Ichiyama T., BIHARMONIC MAPS BI Y