ENDS OF RIEMANNIAN-MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE OUTSIDE A COMPACT SET

被引:22
作者
CAI, ML
机构
关键词
D O I
10.1090/S0273-0979-1991-16038-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider complete manifolds with Ricci curvature nonnegative outside a compact set and prove that the number of ends of such a manifold is finite and in particular we give an explicit upper bound for the number.
引用
收藏
页码:371 / 377
页数:7
相关论文
共 7 条
[1]  
ABRESCH U, IN PRESS J AM MATH S
[2]  
ABRESCH U, 1985, ANN SCI ECOLE NORM S, V28, P665
[3]  
Cheeger J, 1971, J DIFFERENTIAL GEOME, V6, P119
[4]  
ESCHENBURG J. -H, 1984, ANN GLOB ANAL GEOM, V2, P141
[5]  
LI P, 1990, HARMONIC FUNCTIONS S
[6]  
LIU ZD, 1990, BALL COVERING MANIFO
[7]  
TOPONOGOV VA, 1964, AM MATH SOC TRANSL, V37, P287