THE Q-ARY IMAGE OF A Q(M)-ARY CYCLIC CODE

被引:23
作者
SEGUIN, GE
机构
[1] Department of Electrical and Computer Engineering, Royal Military College, Kingston
关键词
CYCLIC CODE; Q-ARY IMAGE; CONCATENATED STRUCTURE; PRIMARY CYCLIC CODE;
D O I
10.1109/18.370140
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For (n, q) = 1 V a q(m)-ary cyclic code of length n and with generator polynomial g(x), we show that there exists a basis for F-qm Over F-q with respect to which the q-ary image of V is cyclic, if and only if: i) g(x) is over F-q; or ii) g(x) = g(0)(x)(x - gamma(-q mu)), g(0)(x) is over F-q, F-q not equal F-qk = F-q(gamma) subset of F-qm, mu an integer module k, and w(m) - gamma has a divisor over F-qk of degree e = m/k; or iii) g(x) = g(0)(x) Pi(mu is an element of S)(x - y(-q mu)), g(0)(x) is over F-q, F-q not equal F-qk = F-q(gamma) subset of F-qm, S a set of integers modulo k of cardinality k - 1 and w(m) - gamma has a divisor over F-qk of degree e = m/k. In all of the above cases, we determine all of the bases with respect to which the q-ary image of V is cyclic.
引用
收藏
页码:387 / 399
页数:13
相关论文
共 20 条
[1]  
Curtis C.W., 1962, REPRESENTATION THEOR
[2]  
HANAN M, 1964, SIAM J APPL MATH, V12, P794
[3]   CYCLIC CONCATENATED CODES WITH CONSTACYCLIC OUTER CODES [J].
JENSEN, JM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (03) :950-959
[4]   THE CONCATENATED STRUCTURE OF CYCLIC AND ABELIAN CODES [J].
JENSEN, JM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (06) :788-793
[5]   DECODING OF CIRCULANT CODES [J].
KARLIN, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (06) :797-+
[6]  
KARLIN M, 1972, IEEE INT S INFORMATI
[7]  
LEONARD DG, 1991, DESIGNS CODES CRYPTO, V1, P1863
[8]  
Lidl R., 1983, FINITE FIELDS, V20
[9]  
Lin S., 1983, PRINC MOB COMMUN
[10]  
Macwilliams F. J., 1977, THEORY ERROR CORRECT