CHAOS OF TRAVELING WAVES IN A DISCRETE CHAIN OF DIFFUSIVELY COUPLED MAPS

被引:80
作者
AFRAIMOVICH, VS [1 ]
NEKORKIN, VI [1 ]
机构
[1] NIZHNY NOVGOROD STATE UNIV,NIZHNII NOVGOROD 603600,RUSSIA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1994年 / 4卷 / 03期
关键词
D O I
10.1142/S0218127494000459
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An infinite set of stationary traveling waves are found in a discrete analog of the nonlinear diffusion Huxley equation. Their profiles are determined by the trajectories of Bernoulli scheme containing two symbols. It is proved that these waves are stable with respect to perturbations moving with the same speed. Thus it is shown that chaos of traveling waves is realized in this system.
引用
收藏
页码:631 / 637
页数:7
相关论文
共 22 条
[1]   HYPERBOLICITY OF INFINITE-DIMENSIONAL DRIFT SYSTEMS [J].
AFRAIMOVICH, VS ;
PESIN, YB .
NONLINEARITY, 1990, 3 (01) :1-19
[2]  
AFRAIMOVICH VS, 1977, DOKL AKAD NAUK SSSR+, V234, P336
[3]  
AFRAIMOVICH VS, 1991, METHOD FINITE DIMENS
[4]  
AFRAIMOVICH VS, 1989, STABILITY STRUCTURES
[5]  
AFRAIMOVICH VS, 1991, MATEMATICHESKOJE MOD, V4, P83
[6]  
AFRAIMOVICH VS, 1990, N267 I APPL PHYS PRE
[7]  
[Anonymous], 1986, COLLAPSE TORI GENESI
[8]  
Collet P., 1990, PRINCETON SERIES PHY
[9]  
Crutchfield J., 1987, DIRECTIONS CHAOS
[10]  
Dodd R., 1982, SOLITON NONLINEAR WA