BOGOMOLNYI SOLITONS IN A GAUGED O(3) SIGMA-MODEL

被引:158
作者
SCHROERS, BJ [1 ]
机构
[1] UNIV DURHAM,DEPT MATH SCI,DURHAM DH1 3LE,ENGLAND
关键词
SIGMA MODELS; BOGOMOLNYI EQUATIONS; SKYRME-MAXWELL THEORY;
D O I
10.1016/0370-2693(95)00833-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The scale invariance of the 0(3) sigma model can be broken by gauging a U(1) subgroup of the 0(3) symmetry and including a Maxwell term for the gauge field in the Lagrangian. Adding also a suitable potential one obtains a field theory of Bogomol'nyi type with topological solitons. These solitons are stable against rescaling and carry magnetic flux which can take arbitrary values in some finite interval. The soliton mass is independent of the flux, but the soliton size depends on it. However, dynamically changing the flux requires infinite energy, so the flux, and hence the soliton size, remains constant during time evolution.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 11 条
[1]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[2]   INTEGRABLE NON-LINEAR KLEIN-GORDON EQUATIONS AND TODA-LATTICES [J].
FORDY, AP ;
GIBBONS, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 77 (01) :21-30
[3]  
GLADIKOWSKI J, 1995, DTP9529 DURH PREPR
[4]   SELF-DUAL CHERN-SIMONS SOLITONS [J].
JACKIW, R ;
LEE, K ;
WEINBERG, EJ .
PHYSICAL REVIEW D, 1990, 42 (10) :3488-3499
[5]  
JAFFE A, 1980, VORTICES MONOPOLES, P1
[6]   LOW-ENERGY SCATTERING OF SOLITONS IN THE CP1 MODEL [J].
LEESE, R .
NUCLEAR PHYSICS B, 1990, 344 (01) :33-72
[7]   Q-LUMPS AND THEIR INTERACTIONS [J].
LEESE, RA .
NUCLEAR PHYSICS B, 1991, 366 (02) :283-311
[8]   SOLITON STABILITY IN THE O(3) SIGMA-MODEL IN (2+1) DIMENSIONS [J].
LEESE, RA ;
PEYRARD, M ;
ZAKRZEWSKI, WJ .
NONLINEARITY, 1990, 3 (02) :387-412
[9]   SOLITON SCATTERING IN THE SKYRME MODEL IN (2+1) DIMENSIONS .1. SOLITON SOLITON CASE [J].
PEYRARD, M ;
PIETTE, B ;
ZAKRZEWSKI, WJ .
NONLINEARITY, 1992, 5 (02) :563-583
[10]   SOLITON SCATTERING IN THE SKYRME MODEL IN (2+1) DIMENSIONS .2. MORE GENERAL SYSTEMS [J].
PEYRARD, M ;
PIETTE, B ;
ZAKRZEWSKI, WJ .
NONLINEARITY, 1992, 5 (02) :585-600