INTERIOR DERIVATIVE BLOW-UP FOR QUASILINEAR PARABOLIC EQUATIONS

被引:33
作者
Giga, Yoshikazu [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 060, Japan
关键词
D O I
10.3934/dcds.1995.1.449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give examples of a bounded solution whose gradient blows up in a finite time but it stays bounded on the boundary for a class of quasilinear parabolic equations with zero boundary data. The method reflects a geometric argument for curve evolution equations.
引用
收藏
页码:449 / 461
页数:13
相关论文
共 16 条
[1]  
Angenent S. B., INTERIOR GRADIENT BL
[2]   ON THE REGULARITY OF THE SOLUTIONS OF SOME DEGENERATE PARABOLIC EQUATIONS [J].
BLANC, P .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (5-6) :821-846
[3]  
CHEN YG, 1991, DIFF GEOMETRY, V33, P749
[4]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[5]  
Dlotko T., 1994, J MATH ANAL APPL, V154, P226
[6]  
Edmunds D. E., 1971, ANN SCUOLA NORM SUP, V25, P397
[7]  
Evans L. C., GEOMETRIC INTERPRETA
[8]   MOTION OF LEVEL SETS BY MEAN-CURVATURE .1. [J].
EVANS, LC ;
SPRUCK, J .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (03) :635-681
[9]  
Fila M., 1994, DIFFERENTIAL INTEGRA, V7, P811
[10]   GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR INTERFACE EQUATIONS COUPLED WITH DIFFUSION-EQUATIONS [J].
GIGA, Y ;
GOTO, S ;
ISHII, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :821-835