POLYNOMIALS FOR HYPEROVALS OF DESARGUESIAN PLANES

被引:8
作者
OKEEFE, CM
PENTTILA, T
机构
[1] University of Western Australia, Nedlands
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1991年 / 51卷
基金
澳大利亚研究理事会;
关键词
D O I
10.1017/S1446788700034601
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies o-polynomials, that is, polynomials which represent hyperovals in Desarguesian projective planes of even order. We present theoretical restrictions on the form that o-polynomials can have, and we determine the number of o-polynomials corresponding to each of the known classes of hyperovals (other than Cherowitzo's). We use this to give the number of known o-polynomials for the fields of orders 4, 8, 16 and 32. Exploratory computer searches for o-polynomials for fields of small orders greater than 16 are reported.
引用
收藏
页码:436 / 447
页数:12
相关论文
共 14 条
[1]  
Cherowitzo W., 1988, ANN DISCRETE MATH, V37, P87
[2]  
GLYNN DG, 1989, GEOMETRIAE DEDICATA, V32, P247
[3]  
GLYNN DG, 1983, LECT NOTES MATH, V1036, P217
[4]  
Hall Jr M., 1975, ANN MAT PUR APPL, V102, P159
[5]  
Hirschfeld JWP, 1998, PROJECTIVE GEOMETRIE, V2nd
[6]  
LUNELLI L, 1958, K ARCHI COMPLETI NEI
[7]  
OKEEFE CM, UNPUB SYMMETRIES ARC
[8]  
OKEEFE CM, 1989, POLYNOMIALS REPRESEN
[9]  
OKEEFE CM, IN PRESS EUROPEAN J
[10]   UNUSUAL GENERALIZED QUADRANGLE OF ORDER 16 [J].
PAYNE, SE ;
CONKLIN, JE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (01) :50-74