THE ISOMETRIES OF H-INFINITY (E)

被引:8
作者
LIN, PK
机构
[1] Memphis State University, Memphis, TN
关键词
D O I
10.2140/pjm.1990.143.69
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a uniformly convex and uniformly smooth complex Banach space. We prove that every onto isometry T on H∞(E) is of the form (TF)(z) = F(F(t(z))) (F ∈ H∞(E), |z| < 1), where F is an isometry from E onto E and t is a conformal map of the unit disc onto itself. © 1990 by Pacific Journal of Mathematics.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 10 条
[1]  
BOURGIN RD, LECTURE NOTES MATH, V993
[2]  
CAMBERN M, 1972, P AM MATH SOC, V36, P173
[3]  
CAMBERN M, 1977, B I MATH ACAD SINICA, V5, P105
[4]  
Dunford N, 1958, LINEAR OPERATORS, VI
[5]  
Hoffman K., 1988, BANACH SPACES ANAL F
[6]  
NAGASAWA M, 1959, KODAI MATH SEM REP, V11, P182, DOI DOI 10.2996/KMJ/1138844205
[7]   STRONG MAXIMUM MODULUS THEOREM FOR ANALYTIC FUNCTIONS INTO A BANACH SPACE [J].
THORP, E ;
WHITLEY, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 18 (04) :640-&
[8]  
Wermer, 1960, P AM MATH SOC, V11, P694, DOI [10.1090/S0002-9939-1960-0121646-9, DOI 10.2307/2034545]
[9]  
[No title captured]
[10]  
[No title captured]