BELTRAMI EQUATIONS REVISITED: MARCINKIEWICZ EXPONENTS AND PAINLEVE-TYPE THEOREM

被引:2
作者
Katz, D. B. [1 ]
机构
[1] Kazan Fed Univ, 18 Kremlyovskaya Str, Kazan 420008, Russia
来源
PROBLEMY ANALIZA-ISSUES OF ANALYSIS | 2018年 / 7卷
关键词
fractals; non-rectifiable curves; boundary value problem; Riemann boundary value problem;
D O I
10.15393/j3.art.2018.5431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with some new results on some types of Beltrami equations. There is a new approach involving the new metric characteristics: the Marcinkiewicz exponents. Another vision is applying the Cauchy-type integral representation to such equations. One more idea is to obtain analogs of some classical theorems for such equations.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 12 条
[1]  
[Anonymous], 1977, BOUNDARY VALUE PROBL
[2]  
Blaya R. Abreu, 2008, INT J PURE APPL MATH, V42, P19
[3]  
Falconer K, 2014, FRACTAL GEOMETRY
[4]   Marcinkiewicz exponents and integrals over non-rectifiable paths [J].
Kats, Boris A. ;
Katz, David B. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (12) :3402-3410
[5]   Marcinkiewicz Exponents and Their Application in Boundary-Value Problems [J].
Kats, D. B. .
RUSSIAN MATHEMATICS, 2014, 58 (03) :57-59
[6]   Integral Representations for Solutions of Some Types of the Beltrami Equations [J].
Katz D.B. ;
Kats B.A. .
Russian Mathematics, 2018, 62 (3) :18-22
[7]   Marcinkiewicz exponents and jump problem for Beltrami equation [J].
Katz D.B. .
Russian Mathematics, 2017, 61 (6) :37-43
[8]  
Katz D. B., 2016, SIBERIAN MATH J, V57, P364, DOI DOI 10.1134/S003744661602018X
[9]  
Monahov V. N., 1977, BOUNDARY VALUE PROBL
[10]  
Stein E.M., 1970, PRINCETON MATH SERIE, V30