PARAMETRIZATION OF SCALE-INVARIANT SELF-ADJOINT EXTENSIONS OF SCALE-INVARIANT SYMMETRIC OPERATORS

被引:0
作者
Bekker, Miron B. [1 ]
Bohner, Martin J. [2 ]
Ugol'nikov, Alexander P. [3 ]
Voulov, Hristo [4 ]
机构
[1] Univ Pittsburgh, Dept Math, Johnstown, PA 15902 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO USA
[3] Odessa Natl Acad Food Technol, Dept Math, Odessa, Ukraine
[4] Univ Missouri, Dept Math & Stat, Kansas City, MO 64110 USA
来源
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY | 2018年 / 24卷 / 01期
关键词
Symmetric operator; scale-invariant operator; self-adjoint extension; generalized resolvents;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On a Hilbert space H, we consider a symmetric scale-invariant operator with equal defect numbers. It is assumed that the operator has at least one scale-invariant self-adjoint extension in H. We prove that there is a one-to-one correspondence between (generalized) resolvents of scale-invariant extensions and solutions of some functional equation. Two examples of Dirac-type operators are considered.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 31 条
  • [1] Abramowitz M., 1964, HANBOOK MATH FUNCTIO, V55
  • [2] Akhiezer N. I., 1993, THEORY LINEAR OPERAT
  • [3] Akhiezer N.I., 1988, TRANSLATIONS MATH MO, V70
  • [4] Bekker M, 2007, METHODS FUNCT ANAL T, V13, P223
  • [5] Bekker M. B., 2007, ADV DYN SYST APPL, V2, P141
  • [6] Bekker MB, 2015, METHODS FUNCT ANAL T, V21, P41
  • [7] Bekker MB, 2011, METHODS FUNCT ANAL T, V17, P281
  • [8] Extreme self-adjoint extensions of a semibounded q-difference operator
    Bekker, Miron B.
    Bohner, Martin J.
    Voulov, Hristo
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 869 - 884
  • [9] Automorphic Invariant Isometric Operators
    Bekker, Miron B.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2009, 3 (03) : 587 - 610
  • [10] Bekker Miron B., 2010, J PHYS A, V43, P145