Fibonacci and Lucas primes

被引:0
作者
Leyendekkers, J. V. [1 ]
Shannon, A. G. [2 ]
机构
[1] Univ Sydney, Fac Sci, Sydney, NSW 2006, Australia
[2] Univ Technol Sydney, Fac Engn & IT, Sydney, NSW 2007, Australia
关键词
Fibonacci sequence; Golden Ratio; modular rings; Pascal's triangle; Binet formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The structures of Fibonacci numbers, F-n, formed when n equals a prime, p, are analysed using the modular ring Z(5), Pascal's Triangle as well as various properties of the Fibonacci numbers to calculate "Pascal-Fibonacci" numbers to test primality by demonstrating the many structural differences between the cases when Fn is prime or composite.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 50 条
[41]   THE FIBONACCI AUTOMORPHISM OF FREE BURNSIDE GROUPS [J].
Pahlevanyan, Ashot S. .
RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2011, 45 (03) :301-309
[42]   The Fibonacci sequence and the golden ratio in music [J].
van Gend, Robert .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (01) :72-77
[43]   Some Identities of Generalized Fibonacci Sequence [J].
Chong, Chin-Yoon ;
Cheah, C. L. ;
Ho, C. K. .
PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 :661-665
[44]   ON THE SPECTRA OF GENERALIZED FIBONACCI AND FIBONACCI-LIKE OPERATORS [J].
Slapnicar, Ivan .
OPERATORS AND MATRICES, 2012, 6 (01) :49-62
[45]   Number Theory and Mathematical Analysis - Fibonacci expansions [J].
Baiocchi, Claudio ;
Komornik, Vilmos ;
Loreti, Paola .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2021, 32 (03) :379-389
[46]   A Fibonacci quotient [J].
Griffiths, Martin ;
Rajagopal, Surajit .
INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2016, 47 (01) :139-144
[47]   An extension of Lucas identity via Pascal's triangle [J].
Anatriello, Giuseppina ;
Vineenzi, Giovanni .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (03) :647-658
[48]   The Extended Frobenius Problem for Fibonacci Sequences Incremented by a Fibonacci Number [J].
Aureliano M. Robles-Pérez ;
José Carlos Rosales .
Mediterranean Journal of Mathematics, 2023, 20
[49]   The Extended Frobenius Problem for Fibonacci Sequences Incremented by a Fibonacci Number [J].
Robles-Perez, Aureliano M. ;
Rosales, Jose Carlos .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
[50]   Summation of the Product of Certain Functions and Generalized Fibonacci Numbers [J].
Chong, Chin-Yoon ;
Ang, Siew-Ling ;
Ho, C. K. .
INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014), 2014, 1635 :80-85