ON A MATRIX GENERALIZATION OF AFFINE-SCALING VECTOR-FIELDS

被引:14
作者
FAYBUSOVICH, L
机构
关键词
LINEAR PROGRAMMING; INTERIOR POINT METHODS; MATRIX PROBLEMS;
D O I
10.1137/S0895479893251939
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a generalization of affine-scaling vector fields for matrix linear programming problems. We discuss various properties of these vector fields and suggest a generalization of a path-following algorithm that is due to C.Gonoaga [SIAM Rev., 34 (1992), pp. 493-513].
引用
收藏
页码:886 / 897
页数:12
相关论文
共 15 条
[11]   PATH-FOLLOWING METHODS FOR LINEAR-PROGRAMMING [J].
GONZAGA, CC .
SIAM REVIEW, 1992, 34 (02) :167-224
[12]   AN INTERIOR-POINT METHOD FOR MINIMIZING THE MAXIMUM EIGENVALUE OF A LINEAR COMBINATION OF MATRICES [J].
JARRE, F .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) :1360-1377
[13]  
Nesterov Y., 1994, INTERIOR POINT POLYN
[14]   OPTIMALITY CONDITIONS AND DUALITY-THEORY FOR MINIMIZING SUMS OF THE LARGEST EIGENVALUES OF SYMMETRICAL MATRICES [J].
OVERTON, ML ;
WOMERSLEY, RS .
MATHEMATICAL PROGRAMMING, 1993, 62 (02) :321-357
[15]  
SONNEVEND G, 1991, NUMERICAL LINEAR ALG