ON A MATRIX GENERALIZATION OF AFFINE-SCALING VECTOR-FIELDS

被引:14
作者
FAYBUSOVICH, L
机构
关键词
LINEAR PROGRAMMING; INTERIOR POINT METHODS; MATRIX PROBLEMS;
D O I
10.1137/S0895479893251939
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a generalization of affine-scaling vector fields for matrix linear programming problems. We discuss various properties of these vector fields and suggest a generalization of a path-following algorithm that is due to C.Gonoaga [SIAM Rev., 34 (1992), pp. 493-513].
引用
收藏
页码:886 / 897
页数:12
相关论文
共 15 条
[1]  
ALIZADEH F, 1992, ADV OPTIMIZATION PAR
[2]   THE NONLINEAR GEOMETRY OF LINEAR-PROGRAMMING .1. AFFINE AND PROJECTIVE SCALING TRAJECTORIES [J].
BAYER, DA ;
LAGARIAS, JC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (02) :499-526
[3]   METHOD OF CENTERS FOR MINIMIZING GENERALIZED EIGENVALUES [J].
BOYD, S ;
ELGHAOUI, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 188 :63-111
[4]  
BOYD S, IN PRESS MONOGRAPH
[5]  
BOYD S, IN PRESS MATH PROGRA
[6]  
CHU M, REVISIT ED TESTING P
[7]  
Dikin I. I., 1967, SOVIET MATH DOKLADY, V8, P674
[8]   HAMILTONIAN-STRUCTURE OF DYNAMIC-SYSTEMS WHICH SOLVE LINEAR-PROGRAMMING PROBLEMS [J].
FAYBUSOVICH, L .
PHYSICA D, 1991, 53 (2-4) :217-232
[9]  
FAYBUSOVICH L, 1992 IEEE C DEC CONT, P1626
[10]   SEMI-DEFINITE MATRIX CONSTRAINTS IN OPTIMIZATION [J].
FLETCHER, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (04) :493-513