A NONCHARACTERISTIC CAUCHY-PROBLEM FOR LINEAR PARABOLIC EQUATIONS .3. A VARIATIONAL METHOD AND ITS APPROXIMATION SCHEMES

被引:13
作者
HAO, DN
机构
[1] FREE UNIV BERLIN,INST MATH 1,W-1000 BERLIN 33,GERMANY
[2] FREE UNIV BERLIN,DEPT MATH,W-1000 BERLIN 33,GERMANY
关键词
D O I
10.1080/01630569208816499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [5] a variational method is suggested for the following noncharacteristic Cauchy problem for parabolic equations Pu(x, t) = u(t)(x, t) 0 less-than-or-equal-to x < 1 0 less-than-or-equal-to t less-than-or-equal-to T "surface temperature"\x=0 = phi(t) 0 < t less-than-or-equal-to T "surface heat flux"\x=0 = g(t) 0 < t less-than-or-equal-to T Here P is an elliptic operator, phi and g are given functions. In this paper a discretization in time Galerkin method and a finite difference method for this variational problem are proposed. Convergence theorems of these methods are given.
引用
收藏
页码:565 / 583
页数:19
相关论文
共 10 条
[1]  
BAUMEISTER J, 1987, STABLE SOLUTIONS INV
[2]  
BUDAK BM, 1975, SOME COMPUTING ASPEC
[3]  
DINH NH, 1992, NUMER FUNCT ANAL OPT, V13, P541
[4]  
DINH NH, A9136 FU PREPR
[5]  
Goncharsky A. V., 1989, ITERATIVE METHODS SO
[6]  
Ladyzhenskaya OA., 1985, BOUND VALUE PROBL
[7]  
TAGIEV RK, 1982, THESIS BAKU
[8]  
VAINIKKO GM, 1986, ITERATIVE PROCESSES
[9]  
Vasil'ev FP., 1981, METHODS SOLVING EXTR
[10]  
VASILEV FP, 1978, OPTIMAL CONTROL, P118