General Incremental Sliding-Window Aggregation

被引:69
作者
Tangwongsan, Kanat [1 ]
Hirzel, Martin [2 ]
Schneider, Scott [2 ]
Wu, Kun-Lung [2 ]
机构
[1] Mahidol Univ, Int Coll, Bangkok 10700, Thailand
[2] IBM Res, Yorktown Hts, NY USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2015年 / 8卷 / 07期
关键词
D O I
10.14778/2752939.2752940
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stream processing is gaining importance as more data becomes available in the form of continuous streams and companies compete to promptly extract insights from them. In such applications, sliding-window aggregation is a central operator, and incremental aggregation helps avoid the performance penalty of re-aggregating from scratch for each window change. This paper presents Reactive Aggregator (RA), a new framework for incremental sliding-window aggregation. RA is general in that it does not require aggregation functions to be invertible or commutative, and it does not require windows to be FIFO. We implemented RA as a drop-in replacement for the Aggregate operator of a commercial streaming engine. Given m updates on a window of size n, RA has an algorithmic complexity of O(m + m log (n/m)), rivaling the best prior algorithms for any m. Furthermore, RA's implementation minimizes overheads from allocation and pointer traversals by using a single flat array.
引用
收藏
页码:702 / 713
页数:12
相关论文
共 50 条
[21]   Incremental timetable generation in busy and complex railway stations: sliding-window algorithm with cancellation processing [J].
Bai, Lijie ;
Bourdeaud'huy, Thomas ;
Castelain, Emmanuel ;
Rabenasolo, Besoa .
IFAC PAPERSONLINE, 2015, 48 (03) :436-441
[22]   Adaptive Change Detection for Long-Term Machinery Monitoring Using Incremental Sliding-Window [J].
Teng Wang ;
GuoLiang Lu ;
Jie Liu ;
Peng Yan .
Chinese Journal of Mechanical Engineering, 2017, 30 (06) :1338-1346
[23]   Adaptive Change Detection for Long-Term Machinery Monitoring Using Incremental Sliding-Window [J].
Wang, Teng ;
Lu, Guo-Liang ;
Liu, Jie ;
Yan, Peng .
CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2017, 30 (06) :1338-1346
[24]   Adaptive Change Detection for Long-Term Machinery Monitoring Using Incremental Sliding-Window [J].
Teng Wang ;
Guo-Liang Lu ;
Jie Liu ;
Peng Yan .
Chinese Journal of Mechanical Engineering, 2017, 30 :1338-1346
[25]   Sketching distributed sliding-window data streams [J].
Papapetrou, Odysseas ;
Garofalakis, Minos ;
Deligiannakis, Antonios .
VLDB JOURNAL, 2015, 24 (03) :345-368
[26]   Design of Optimized Sliding-Window BATS Codes [J].
Yang, Juan ;
Shi, Zhi-Ping ;
Wang, Chen-Xi ;
Ji, Jian-Bo .
IEEE COMMUNICATIONS LETTERS, 2019, 23 (03) :410-413
[27]   Sliding-Window QPS (SW-QPS) [J].
Meng J. ;
Gong L. ;
Xu J.J. .
Performance Evaluation Review, 2021, 48 (03) :71-76
[28]   Exploring general memory structures in turbo decoders using sliding-window MAP algorithm [J].
Wu, CM ;
Shieh, MD ;
Wu, CH .
IEICE TRANSACTIONS ON COMMUNICATIONS, 2003, E86B (11) :3163-3173
[29]   Consistency Analysis for Sliding-Window Visual Odometry [J].
Dong-Si, Tue-Cuong ;
Mourikis, Anastasios I. .
2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, :5202-5209
[30]   Computing diameter in the streaming and sliding-window models [J].
Feigenbaum, J ;
Kannan, S ;
Zhang, J .
ALGORITHMICA, 2005, 41 (01) :25-41