General Incremental Sliding-Window Aggregation

被引:65
|
作者
Tangwongsan, Kanat [1 ]
Hirzel, Martin [2 ]
Schneider, Scott [2 ]
Wu, Kun-Lung [2 ]
机构
[1] Mahidol Univ, Int Coll, Bangkok 10700, Thailand
[2] IBM Res, Yorktown Hts, NY USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2015年 / 8卷 / 07期
关键词
D O I
10.14778/2752939.2752940
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stream processing is gaining importance as more data becomes available in the form of continuous streams and companies compete to promptly extract insights from them. In such applications, sliding-window aggregation is a central operator, and incremental aggregation helps avoid the performance penalty of re-aggregating from scratch for each window change. This paper presents Reactive Aggregator (RA), a new framework for incremental sliding-window aggregation. RA is general in that it does not require aggregation functions to be invertible or commutative, and it does not require windows to be FIFO. We implemented RA as a drop-in replacement for the Aggregate operator of a commercial streaming engine. Given m updates on a window of size n, RA has an algorithmic complexity of O(m + m log (n/m)), rivaling the best prior algorithms for any m. Furthermore, RA's implementation minimizes overheads from allocation and pointer traversals by using a single flat array.
引用
收藏
页码:702 / 713
页数:12
相关论文
共 50 条
  • [1] Optimal and General Out-of-Order Sliding-Window Aggregation
    Tangwongsan, Kanat
    Hirzel, Martin
    Schneider, Scott
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (10): : 1167 - 1180
  • [2] AN INCREMENTAL SPECIFICATION OF THE SLIDING-WINDOW PROTOCOL
    PALIWODA, K
    SANDERS, JW
    DISTRIBUTED COMPUTING, 1991, 5 (02) : 83 - 94
  • [3] FIatFIT: Accelerated Incremental Sliding-Window Aggregation For Real-Time Analytics
    Shein, Anatoli U.
    Chrysanthis, Panos K.
    Labrinidis, Alexandros
    SSDBM 2017: 29TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, 2017,
  • [4] Sliding-Window Filtering with Constraints of Compactness and Recency in Incremental Database
    Ren, Jiadong
    Tian, Haiyan
    Lv, Shiyong
    NCM 2008: 4TH INTERNATIONAL CONFERENCE ON NETWORKED COMPUTING AND ADVANCED INFORMATION MANAGEMENT, VOL 2, PROCEEDINGS, 2008, : 665 - 669
  • [5] Incremental evaluation of sliding-window queries over data streams
    Ghanem, Thanaa M.
    Hammad, Moustafa A.
    Mokbel, Mohamed F.
    Aref, Walid G.
    Elmagarmid, Ahmed K.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2007, 19 (01) : 57 - 72
  • [6] CPiX: Real-Time Analytics Over Out-of-Order Data Streams by Incremental Sliding-Window Aggregation
    Bou, Savong
    Kitagawa, Hiroyuki
    Amagasa, Toshiyuki
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5239 - 5250
  • [7] L-BiX: incremental sliding-window aggregation over data streams using linear bidirectional aggregating indexes
    Bou, Savong
    Kitagawa, Hiroyuki
    Amagasa, Toshiyuki
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (08) : 3107 - 3131
  • [8] L-BiX: incremental sliding-window aggregation over data streams using linear bidirectional aggregating indexes
    Savong Bou
    Hiroyuki Kitagawa
    Toshiyuki Amagasa
    Knowledge and Information Systems, 2020, 62 : 3107 - 3131
  • [9] Sliding-window compression on the hypercube
    Konstantopoulos, C
    Svolos, A
    Kaklamanis, C
    EURO-PAR 2000 PARALLEL PROCESSING, PROCEEDINGS, 2000, 1900 : 835 - 838
  • [10] The generalized sliding-window spectrum
    denBrinker, AC
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1996, : 425 - 428