MODULATION OF BRAIN NA+ CHANNELS BY A G-PROTEIN-COUPLED PATHWAY

被引:70
|
作者
MA, JY
LI, M
CATTERALL, WA
SCHEUER, T
机构
[1] Department of Pharmacology, SJ-30, University of Washington, Seattle
关键词
WHOLE-CELL VOLTAGE CLAMP; ELECTRICAL EXCITABILITY; PERTUSSIS TOXIN;
D O I
10.1073/pnas.91.25.12351
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Na+ channels in acutely dissociated rat hippocampal neurons and in Chinese hamster ovary (CHO) cells transfected with a cDNA encoding the alpha subunit of rat brain type IIA Na+ channel (CNaIIA-1 cells) are modulated by guanine nucleotide binding protein (G protein)-coupled pathways under conditions of whole cell voltage clamp. Activation of G proteins by 0.2-0.5 mM guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]), a nonhydrolyzable GTP analog, increased Na+ currents recorded in both cell types. The increase in current amplitude was caused by an 8- to 10-mV negative shift in the voltage dependence of both activation and inactivation. The effects of G-protein activators were blocked by treatment with pertussis toxin or guanosine 5'-[gamma-thio]diphosphate (GDP[gamma]), a nonhydrolyzable GDP analog, but not by cholera toxin. GDP[beta S] (2 mM) alone had effects opposite those of GTP[gamma S], shifting Na+-channel gating 8-10 mV toward more-positive membrane potentials and suggesting that basal activation of G proteins in the absence of stimulation is sufficient to modulate Na+ channels. In CNaIIA-1 cells, thrombin, which activates pertussis toxin-sensitive G proteins in CHO cells, caused a further negative shift in the voltage dependence of Na+-channel activation and inactivation beyond that observed with GTP alone. The results in CNaIIA-1 cells indicate that the alpha subunit of the Na+ channel alone is sufficient to mediate G protein effects on gating. The modulation of Na+ channels via a G-protein-coupled pathway acting on Na+-channel alpha subunits may regulate electrical excitability through integration of different G protein coupled synaptic inputs.
引用
收藏
页码:12351 / 12355
页数:5
相关论文
共 50 条
  • [41] G-protein-coupled receptor kinases
    Lohse, MJ
    Krasel, C
    Winstel, R
    Mayor, F
    KIDNEY INTERNATIONAL, 1996, 49 (04) : 1047 - 1052
  • [42] G-protein-coupled receptors at a glance
    Kroeze, WK
    Sheffler, DJ
    Roth, BL
    JOURNAL OF CELL SCIENCE, 2003, 116 (24) : 4867 - 4869
  • [43] Oligomerisation of G-protein-coupled receptors
    Milligan, G
    JOURNAL OF CELL SCIENCE, 2001, 114 (07) : 1265 - 1271
  • [44] G-protein-coupled receptor family
    Kerlavage, Anthony R.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 1991, 1 (03) : 394 - 401
  • [45] Deorphanization of G-protein-coupled receptors
    Parmentier, M.
    Detheux, M.
    GPCRS: FROM DEORPHANIZATION TO LEAD STRUCTURE IDENTIFICATION, 2007, 2 : 163 - 186
  • [46] FINGERPRINTING G-PROTEIN-COUPLED RECEPTORS
    ATTWOOD, TK
    FINDLAY, JBC
    PROTEIN ENGINEERING, 1994, 7 (02): : 195 - 203
  • [47] G-protein-coupled receptors and melanoma
    Lee, Hwa Jin
    Wall, Brian
    Chen, Suzie
    PIGMENT CELL & MELANOMA RESEARCH, 2008, 21 (04) : 415 - 428
  • [48] G-PROTEIN-COUPLED RECEPTOR KINASES
    PALCZEWSKI, K
    BENOVIC, JL
    TRENDS IN BIOCHEMICAL SCIENCES, 1991, 16 (10) : 387 - 391
  • [49] G-protein-coupled receptors and cancer
    Dorsam, Robert T.
    Gutkind, J. Silvio
    NATURE REVIEWS CANCER, 2007, 7 (02) : 79 - 94
  • [50] Powdered G-Protein-Coupled Receptors
    Perera, Suchithranga M. D. C.
    Chawla, Udeep
    Brown, Michael F.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (20): : 4230 - 4235