MODULATION THEORY FOR THE BLOWUP OF VECTOR-VALUED NONLINEAR HEAT-EQUATIONS

被引:19
作者
FILIPPAS, S [1 ]
MERLE, F [1 ]
机构
[1] UNIV CERGY PONTOISE, F-75230 PARIS, FRANCE
关键词
D O I
10.1006/jdeq.1995.1031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the blowup of solutions of the nonlinear vector-valued heat equation U-t-Delta U=\U\(p-1) U, U(0)=U-0, where U(x, t)=(u(1)(x, t), ..., u(m)(x, t)) is a vector-valued function from R(n)x(0, T) to R(m) and 1 < p < (3n + 8)/(3n - 4). Working with the equation in similarity variables, and using modulation theory and ideas from center manifold theory, we obtain the asymptotic behavior of U in a backward space-time parabola near any blowup point. (C) 1995 Academic Press, Inc.
引用
收藏
页码:119 / 148
页数:30
相关论文
共 19 条
[1]  
BEBERNES J, 1988, ANN I H POINCARE-AN, V5, P1
[2]  
Carr J., 1981, APPL CTR MANIFOLD TH
[3]   CONVERGENCE, ASYMPTOTIC PERIODICITY, AND FINITE-POINT BLOW-UP IN ONE-DIMENSIONAL SEMILINEAR HEAT-EQUATIONS [J].
CHEN, XY ;
MATANO, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 78 (01) :160-190
[4]   REFINED ASYMPTOTICS FOR THE BLOWUP OF UT-DELTA-U = UP [J].
FILIPPAS, S ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (07) :821-869
[5]  
FILIPPAS S, IN PRESS ANN I H POI
[6]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[7]  
FRIEDMAN A, BLOW SOLUTIONS NONLI
[8]  
GALAKTIONOV VA, 1991, USSR COMP MATH MATH, V3, P399
[9]   ASYMPTOTICALLY SELF-SIMILAR BLOW-UP OF SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (03) :297-319
[10]   NONDEGENERACY OF BLOWUP FOR SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :845-884