INTERFERENCES IN ADIABATIC TRANSITION-PROBABILITIES MEDIATED BY STOKES LINES

被引:43
作者
JOYE, A [1 ]
MILETI, G [1 ]
PFISTER, CE [1 ]
机构
[1] ECOLE POLYTECH FED LAUSANNE, DEPT MATH, CH-1015 LAUSANNE, SWITZERLAND
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 07期
关键词
D O I
10.1103/PhysRevA.44.4280
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the transition probability for two-level quantum-mechanical systems in the adiabatic limit when the Hamiltonian is analytic. We give a general formula for the leading term of the transition probability when it is governed by N complex eigenvalue crossings. This leading term is equal to a decreasing exponential times an oscillating function of the adiabaticity parameter. The oscillating function comes from an interference phenomenon between the contributions from each complex eigenvalue crossing, and when N = 1, it reduces to the geometric prefactor recently studied.
引用
收藏
页码:4280 / 4295
页数:16
相关论文
共 16 条
[11]   Non-resonance excitation transfer in atomic collisions induced by dipole-dipole interaction [J].
Nikitin, E. E. .
CHEMICAL PHYSICS LETTERS, 1968, 2 (06) :402-404
[12]  
Nikitin EE., 1984, THEORY SLOW ATOMIC C
[13]  
Oberhettinger F., 1966, FORMULAS THEOREMS SP, DOI 10.1007/978-3-662-11761-3
[14]   Double stern-gerlach experiment and related collision phenomena [J].
Rosen, N ;
Zener, C .
PHYSICAL REVIEW, 1932, 40 (04) :0502-0507
[16]   MEASURING THE GEOMETRIC COMPONENT OF THE TRANSITION-PROBABILITY IN A 2-LEVEL SYSTEM [J].
ZWANZIGER, JW ;
RUCKER, SP ;
CHINGAS, GC .
PHYSICAL REVIEW A, 1991, 43 (07) :3232-3240