INTERFERENCES IN ADIABATIC TRANSITION-PROBABILITIES MEDIATED BY STOKES LINES

被引:43
作者
JOYE, A [1 ]
MILETI, G [1 ]
PFISTER, CE [1 ]
机构
[1] ECOLE POLYTECH FED LAUSANNE, DEPT MATH, CH-1015 LAUSANNE, SWITZERLAND
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 07期
关键词
D O I
10.1103/PhysRevA.44.4280
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the transition probability for two-level quantum-mechanical systems in the adiabatic limit when the Hamiltonian is analytic. We give a general formula for the leading term of the transition probability when it is governed by N complex eigenvalue crossings. This leading term is equal to a decreasing exponential times an oscillating function of the adiabaticity parameter. The oscillating function comes from an interference phenomenon between the contributions from each complex eigenvalue crossing, and when N = 1, it reduces to the geometric prefactor recently studied.
引用
收藏
页码:4280 / 4295
页数:16
相关论文
共 16 条
[1]  
Berry M. V., 1989, GEOMETRIC PHASES PHY
[2]   GEOMETRIC AMPLITUDE FACTORS IN ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 430 (1879) :405-411
[3]   NONADIABATIC TRANSITIONS INDUCED BY A TIME-DEPENDENT HAMILTONIAN IN SEMICLASSICAL ADIABATIC LIMIT - 2-STATE CASE [J].
DAVIS, JP ;
PECHUKAS, P .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (08) :3129-3138
[4]  
DYKHNE AM, 1962, ZH EKSP TEOR FIZ, V14, P941
[5]   ADIABATIC THEOREM IN COMPLEX PLANE AND SEMICLASSICAL CALCULATION OF NONADIABATIC TRANSITION AMPLITUDES [J].
HWANG, JT ;
PECHUKAS, P .
JOURNAL OF CHEMICAL PHYSICS, 1977, 67 (10) :4640-4653
[6]   EXPONENTIAL DECAY AND GEOMETRIC ASPECT OF TRANSITION-PROBABILITIES IN THE ADIABATIC LIMIT [J].
JOYE, A ;
KUNZ, H ;
PFISTER, CE .
ANNALS OF PHYSICS, 1991, 208 (02) :299-332
[7]   FULL ASYMPTOTIC-EXPANSION OF TRANSITION-PROBABILITIES IN THE ADIABATIC LIMIT [J].
JOYE, A ;
PFISTER, CE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (04) :753-766
[8]  
Kato T., 1966, PERTURBATION THEORY
[9]  
LANDAU LD, 1965, QUANTUM MECHANICS
[10]  
Majorana E., 1932, NUOVO CIMENTO, V9, P43, DOI DOI 10.1007/BF02960953